Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(d=ƯCLN\left(3n-2;4n-3\right)\) \(\left(d\in N\right)\)
Khi đó \(3n-2⋮d\Rightarrow4.\left(3n-2\right)⋮d\)( vì 3n-2 chia hết cho d nên 4.(3n-2) cũng luôn chia hết cho d )
\(4n-3⋮d\Rightarrow3.\left(4n-3\right)⋮d\)( tương tự trên )
Do đó \(3.\left(4n-3\right)-4.\left(3n-2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Do đó \(ƯCLN\left(3n-2;4n-3\right)=1\)
Khi đó phân số \(\frac{3n-2}{4n-3}\)tối giản
\(3n-4⋮n-1\)
\(3n-3-1⋮n-1\)
\(3\left(n-1\right)-1⋮n-1\)
Vì \(3\left(n-1\right)⋮n-1\)
\(\Rightarrow1⋮n-1\)
\(\Rightarrow n-1\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow n\in\left\{2;0\right\}\)
a, 3 chia hết cho n+1.
=> n + 1 thuộc Ư(3) = {-1;1;-3;3}
=> n = {-2;0;-4;2}
Câu a nha
=> n + 1 thuộc Ư(3) = {-1;1;-3;3}
=> n = {-2;0;-4;2}
a) 11 chia hết cho 4n-7
=> 4n-7 thuộc Ư(11)={1,11}
=>\(\hept{\begin{cases}4n-7=1\\4n-7=11\end{cases}}\Rightarrow\hept{\begin{cases}n=2\\n=\frac{9}{2}\end{cases}}\)
Vậy n=2
b) 3n+2 chia hết cho n-1
=> 3n-3+5 chia hết cho n-1
=> 3(n-1)+5 chia hết cho n-1
=> 3(n-1) chia hết cho n-1 ; 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={1,5}
=>\(\hept{\begin{cases}n-1=1\\n-1=5\end{cases}}\Rightarrow\hept{\begin{cases}n=2\\n=6\end{cases}}\)
Vậy n={2,6}
\(a)11⋮4n-7\)
\(\Rightarrow4n-7\inƯ_{(11)}\)
\(\Rightarrow4n-7\in\left\{\pm1;\pm11\right\}\)
ta có bảng sau:
4n-7 | -11 | -1 | 1 | 11 |
n | -1 | 1,5 | 2 | 4,5 |
vậy \(n=\left\{-1;1,5;2;4,5\right\}\)
\(b)3n+2⋮n-1\)
\(\Rightarrow3n+3-1⋮n-1\)
\(\Rightarrow3\left(n+1-1\right)-1⋮n-1\)
\(\Rightarrow3n-1⋮n-1\)
\(\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\inƯ_{(3)}\)
\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)
ta có bảng sau:
n - 1 | -3 | -1 | 1 | 3 |
n | -2 | 0 | 2 | 4 |
vậy \(n=\left\{-2;0;2;4\right\}\)
Ta có:
A=\(n^2\)+n+1
A=n.(n+1)+1
a) do n.(n+1) là tích 2 số tự nhiên liên tiếp => n.(n+1) chia hết cho 2 ; 1ko chia hết cho 2
=> n.(n+1)+1 ko chia hết cho 2
=> A KO CHIA HẾT CHO 2
b) do n.(n+1) là tích 2 số tự nhiên liên tiếp => n.(n+1) chỉ có thể tận cùng là 0,2,6
=>n.(n+1)+1 chỉ có thể tận cùng là 1;3;7 ko chia hết cho 5
=> A ko chia hết cho 5
(n+7)/(3n-1)=1
=> n+7=3n-1
=> 2n=8
=> n=4
n+7 chia hết 3n-1
Suy ra 3*(n+7) chia hết 3n-1
3n -3 + 24 chia hết 3n-1
24 chia hết 3n-1
Suy ra 3n-1 là ước của 24 nên 3n-1=-24;-12;-6;-3;-2;-1;1;2;3;6;12;24 Suy ra n=0;1 (do n thuộc Z)
Vậy n=0;1