Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)
=> \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)
=> \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{49}{50}\)
=> \(1-\frac{1}{n+1}=\frac{49}{50}\)
=> \(\frac{1}{n+1}=1-\frac{49}{50}=\frac{1}{50}\)
=> n + 1 = 50 => n = 49
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)
=> \(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)
=> \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n-1}-\frac{1}{2n+1}=\frac{50}{51}\)
=> \(1-\frac{1}{2n+1}=\frac{50}{51}\)
=> \(\frac{1}{2n+1}=1-\frac{50}{51}=\frac{1}{51}\)
=> 2n + 1 = 51
=> 2n = 50
=> n = 25
Vậy n = 25
đề là \(x^2-\frac{1}{x^2}\)hay là \(x^2+\frac{1}{x^2}\)vậy? Xem lại đề thử xem!
\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)
\(\Leftrightarrow\left(x^2-2+\frac{1}{x^2}\right)+\left(y^2-2+\frac{1}{y^2}\right)=0\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)
\(\Leftrightarrow\left(x;y\right)=\left(1;1\right);\left(1;-1\right);\left(-1;1\right);\left(-1;-1\right)\)
\(\left(\dfrac{1}{3}\right)^{50}.\left(-9\right)^{25}-\dfrac{2}{3}:4\)
\(=\left(\dfrac{1}{3}\right)^{50}.\left[\left(-3\right)^2\right]^{25}-\dfrac{2}{3}.\dfrac{1}{4}\)
\(=\left(\dfrac{1}{3}\right)^{50}.\left(-3\right)^{50}-\dfrac{2}{12}\)
\(=\left[\dfrac{1}{3}.\left(-3\right)\right]^{50}-\dfrac{1}{6}\)
\(=\left(-1\right)^{50}-\dfrac{1}{6}\)
\(=1-\dfrac{1}{6}\)
\(=\dfrac{6}{6}-\dfrac{1}{6}\)
\(=\dfrac{5}{6}\)
\(\left(\dfrac{1}{3}\right)^{50}\cdot\left(-9\right)^{25}-\dfrac{2}{3}:4=\)
=\(\dfrac{1}{3^{50}}\cdot\left(-9\right)^{25}-\dfrac{2}{3}\cdot\dfrac{1}{4}\)
=\(\dfrac{\left(-9\right)^{25}}{9^{25}}-\dfrac{1}{6}\)
=\(-1-\dfrac{1}{6}\)
=\(-\dfrac{6}{6}-\dfrac{1}{6}\)
=\(-\dfrac{7}{6}\)
a) \(M=\frac{-2.10.x^{1+2}y^{2+2}}{5}=-4.x^3.y^4\) Bậc 4 y bậc 3 với x
b) \(N=4.\frac{\left(-1\right)^2}{2^2}x^{3+2}.y^{1+4}=x^5.y^5\) bậc 5 cả x, y
Ta có: \(a\left(b+1\right)+b\left(a+1\right)=\left(a+1\right)\left(b+1\right)\)
\(\Leftrightarrow a+ab+b+ab=a+ab+b+1\)
\(\Leftrightarrow\left(a+ab+b+ab\right)-\left(a+ab+b\right)=1\)
\(\Leftrightarrow ab=1\left(ĐPCM\right)\)
Chúc bạn hok tot
bài hỏi gì vậy bạn
\(\frac{n+2}{n+1}=\frac{n+1+1}{n+1}=\frac{1}{n+1}\)
\(\Leftrightarrow n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)