\(⋮\)n+1

Giúp mk nha! ko chép mạng.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

n+22 chia hết cho n+1

Ta có:n+22 chia hết cho n+1

Suy ra: (n+1+21) chia hết cho (n+1)

Mà:(n+1) chia hết cho (n+1)

Nên 21 chia hết cho (n+1)

Suy ra:(n+1) thuộc tập hợp các ước của 21

           (n+1) thuộc tập hợp các số 1;3;7;21

Suy ra: n = 0;2;6;20

VẬy n= 0;2;6;20

1/a) 12 - x= 1-(-5)

      12 - x = 6

             x= 12-6

             x=6

 b)| x+4|= 12

x+4 = \(\pm\)12

*x+4=12

     x=8

*x+4= -12

    x=-16

2/Tìm n

\(n-5⋮n+2\)

=> \(n+2-7⋮n+2\)

mà \(n+2⋮n+2\)

=> 7\(⋮\)n+2

=> n+2 \(\varepsilon\)Ư(7)= {1;-1;7;-7}

n+21-17-7
n-1-35-9

3/a)4.(-5)2 + 2.(-12)

= 2.2.(-5)2 + 2.(-12)

=2[2.25.(-12)]

=2.(-600)

=-1200

16 tháng 7 2016

S=1/1-1/4+1/4-1/7+.........+1/N-1/N+1

=1/1-(1/4-1/4)+...............+(1/N-1/N)-1/N+1

=1-1/N+1

->S<1

NHA!

16 tháng 7 2016

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n\left(n+3\right)}\)

=>\(S=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)

=>\(S=1-\frac{1}{n+3}< 1\)

Vậy S<1 (đpcm)

31 tháng 1 2018

a) Gọi d là ƯCLN(n, n + 1), d ∈ N*

\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)

\(\Rightarrow\left(n+1\right)-n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n,n+1\right)=1\)

\(\Rightarrow\) \(\frac{n}{n+1}\) là phân số tối giản.

b) Gọi d là ƯCLN(n + 1, 2n + 3), d ∈ N*

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n+1,2n+3\right)=1\)

\(\Rightarrow\) \(\frac{n+1}{2n+3}\) là phân số tối giản.

31 tháng 1 2018

c) Gọi d là ƯCLN(21n + 4, 14n + 3), d ∈ N*

\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}}\)

\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(21n+4,14n+3\right)=1\)

\(\Rightarrow\) \(\frac{21n+4}{14n+3}\) là phân số tối giản.

d) Gọi d là ƯCLN(2n + 3, 3n + 5), d ∈ N*

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3,3n+5\right)=1\)

\(\Rightarrow\) \(\frac{2n+3}{3n+5}\) là phân số tối giản.

22 tháng 9 2016

b1: a, 612.(15+19-34)=612.0=0

b,414.(37.4+23.4-240)=414.0=0

c,(517.125-518.25)+63:23=(517.53-518.52)+33=0+27=27

b2:a,143+7.(n-17)=206

===> 7.(n-17)=206-143=63

====>n-17=63:7=9

=====>n=9+17=26

vậy n=26

b,128-28:(15-n)=124

====>28:(15-n)=128-124=4

=====> 15-n=28:4=7

=====> n=15-7=8

vậy n=8

c,3n.2+48=210

====>3n.2=210-48=162

====>3n=162:2=81=34

====>n=4

vậy n=4

7 tháng 8 2017

\(A=\frac{4n+1}{2n+3}=\frac{4n+6}{2n+3}-\frac{5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}=2-\frac{5}{2n+3}\)

a) A nguyên khi \(\frac{5}{2n+3}\) nguyên <=> 5 chia hết cho 2n+3 

<=>\(2n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

<=>\(2n\in\left\{-8;-4;-2;2\right\}\)

<=>\(n\in\left\{-4;-2;-1;1\right\}\)

b) A lớn nhất khi \(2-\frac{5}{2n+3}\)lớn nhất <=>\(\frac{5}{2n+3}\)  nhỏ nhất <=> 2n+3 lớn nhất < 0 mà n nguyên

<=> 2n+3=-1 <=> n=-2

\(maxA=2-\frac{5}{2n+3}=2-\frac{5}{2\left(-2\right)+3}=2-\frac{5}{-1}=2-\left(-5\right)=7\) tại n=-2

phần giá trị nhỏ nhất bạn làm nốt

9 tháng 5 2017

-22/63<-17/55

tck mình nha

6 tháng 6 2018

bn có biết câu trả lời so sánh y như câu của bạn mà không có dấu trừ không 

Nếu có thì chỉ mik

Cảm ơn nhiều. Mình cần gấp lằm

26 tháng 12 2018

Ta có:

997 là số nguyên tố

\(\Rightarrow n-1\in\left\{1;997\right\}\)

\(\Rightarrow n\in\left\{2;998\right\}\)