K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017

a,M=0
<=>(x-1)2.(x+2)=0
=>TH1:x-1=0 <=> x=1
=>TH2:x+2=0<=> x=-2
Vậy với x=1 hoặc x=-2 thì M=0
b,M>0
<=>(x-1)2.(x+2)>0
=>TH1: x-1 >0 ; x+2>0
<=> x>1 ; x>-2
=> x>1
=>TH2: x-1 <0 ; x+2<0
<=> x<1 ; x<-2
<=> x<-2
Vậy với x >1 hoặc x<-2 thì M>0
c,M<0
<=>(x-1)2.(x+2)<0
=>TH1 : x-1 >0 ; x+2 <0
<=> x>1 ; x<-2
=> Không có giá trị x
=>TH2: x-1 <0 ; x+2 >0
<=> x<1 ; x>-2
=> -2<x<1
Vậy với -2<x<1 thì M<0

16 tháng 6 2020

2b,c mình chỉ ghi cách mà thôi, bạn tự giải nhé :v

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNHChương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNHChương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

10 tháng 3 2022

\(\left\{{}\begin{matrix},m\ne0\\\Delta'>0\Leftrightarrow m^2-m>0\\x1+x2>0\Leftrightarrow2>0\\x1.x2>0\Leftrightarrow\dfrac{1}{m}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[{}\begin{matrix}m< 0\\m>1\end{matrix}\right.\\m>0\\\end{matrix}\right.\)\(\Leftrightarrow m>1\)

NV
24 tháng 10 2019

\(\Delta'=m^2-m^2+m-1=m-1\ge0\Rightarrow m\ge1\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-m+1\end{matrix}\right.\)

\(S=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=4m^2-2\left(-m+1\right)\)

\(=4m^2+2m+1\)

Xét \(f\left(m\right)=4m^2+2m+1\) trên \([1;+\infty)\)

\(a=4>0\) ; \(-\frac{b}{2a}=-\frac{1}{4}< 1\Rightarrow f\left(m\right)\) đồng biến trên \([1;+\infty)\)

\(\Rightarrow S_{min}=f\left(m\right)_{min}=f\left(1\right)=7\)

22 tháng 4 2019

a) Xét \(\Delta\) = b2 - 4ac = (-m)2 - 4(2m - 4)

= m2 - 8m + 16 = ( m - 4 )2

Ta có: ( m - 4 )2 \(\ge\) 0

=> Pt luôn có nghiệm

b) Vì phương trình luôn có nghiệm nên áp dụng định lí Ta- lét:

\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}==m\\x_1x_2=2m-4\end{matrix}\right.\)
Xét phương trình: x12 + x22 - 9

= x12 + x22 + 2x1x2 - 2x1x2 - 9

= (x1 + x2)2 - 2x1x2 - 9

= (-m)2 - 2(2m - 4) - 9

= m2 - 4m + 8 - 9

= m2 - 4m - 1 = m2 - 4m + 4 - 5

= (m - 2)2 - 5

Xét (m - 2)2 \(\ge\) 0

=> (m - 2)2 - 5 \(\ge\) -5

Dấu " =" xảy ra khi m - 2 = 0

<=> m = 2

NV
22 tháng 4 2019

\(\Delta=m^2-8m+16=\left(m-4\right)^2\ge0\Rightarrow\) pt luôn có nghiệm

Khi đó theo Viet \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2m-4\end{matrix}\right.\)

\(A=x_1^2+x_2^2-9=\left(x_1+x_2\right)^2-2x_1x_2-9\)

\(A=m^2-2\left(2m-4\right)-9\)

\(A=m^2-4m-1\)

\(A=\left(m-2\right)^2-5\ge-5\)

\(\Rightarrow A_{min}=-5\) khi \(m=-2\)

6 tháng 4 2020

Hỏi đáp ToánHỏi đáp Toán

14 tháng 8 2019

Để biểu thức m - 1 2 + 3 m - 2 3  có giá trị âm thì:

m - 1 2 + 3 m - 2 3 < 0 ⇔ 3 m - 1 + 2 3 m - 2 6 < 0 ⇔ 3 m - 1 + 2 3 m - 2 < 0 ⇔ 3 m - 3 + 6 m - 4 < 0 ⇔ 9 m - 7 < 0 ⇔ m < 7 9

Chọn D.

30 tháng 12 2022

Bài 3:

a: TH1: m=-2

=>-2(-2-1)x+4<0

=>6x+4<0

=>x<-4/6(loại)

TH2: m<>-2

\(\text{Δ}=\left(2m-2\right)^2-16\left(m+2\right)\)

=4m^2-8m+4-16m-32

=4m^2-24m-28

Để BPT vô nghiệm thì \(\left\{{}\begin{matrix}4m^2-24m-28< =0\\m+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< =m< =7\\m>-2\end{matrix}\right.\Leftrightarrow-1< =m< =7\)

b: TH1: m=3

=>5x-4>0

=>x>4/5(loại)

TH2: m<>3

Δ=(m+2)^2-4*(-4)(m-3)

\(=m^2+4m+4+16m-48=m^2+20m-44\)

Để bất phương trình vô nghiệm thì

\(\left\{{}\begin{matrix}m^2+20m-44< =0\\m-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-22< =m< =2\\m< 3\end{matrix}\right.\Leftrightarrow-22< =m< =2\)

10 tháng 9 2017

Do x> 0 nên 2x >0  và  3 x > 0 .

Áp dụng bất đẳng thức Cô- si cho 2 số dương:   2 x ; 3 x

f x = 2 x + 3 x ≥ 2 . 2 x . 3 x = 2 6

Dấu “=” xảy ra khi 2 x = 3 x ⇔ x = 3 2 = 6 2 .