\(\left(\dfrac{\sqrt{a}+1}{\sqrt{ab}+1}+\dfrac{\sqrt{ab}+\sqrt{a}}{1-\sqrt{ab}}+1\right)\div\l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2018

Mạn phép ko chép lại đề , mk làm luôn

a) \(D=\left[\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(1+\sqrt{ab}\right)+\left(\sqrt{a}+\sqrt{b}\right)\left(1-\sqrt{ab}\right)}{1-ab}\right]:\dfrac{a+b+2ab+1-ab}{1-ab}\)\(D=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(1+\sqrt{ab}+1-\sqrt{ab}\right)}{1-ab}.\dfrac{1-ab}{a+b+ab+1}\)

\(D=\dfrac{2\left(\sqrt{a}+\sqrt{b}\right)}{\left(b+1\right)\left(a+1\right)}\)

13 tháng 6 2018

D=A/B

a)

B=1+(a+b+2ab)/(1-ab)=(a+b+ab)/(1-ab)

dk: a,b≥0; a.b≠1

1/B=(1-ab)/(a+b+ab)

A=√a+√b)[(1+√ab)+(1-√ab)]/(1-ab)=2(√a+√b)/(1-ab)

D=2(√a+√b)/[(a+1)(b+1)]

b)

a=2/(√3+2)=2(2-√3)/[(2+√3)(2-√3)]=2(2-√3)=(√3-1)^2

10 tháng 6 2017

Bài này chính xác là của lớp 9 nè!!

Đề bạn ghi sai hay sao ý, pn xem lại xem, mk sửa đề như dưới, pn tham khảo:

Ta có: \(D=\left(\sqrt{a}+\dfrac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\dfrac{a}{\sqrt{ab}+b}+\dfrac{b}{\sqrt{ab}-a}-\dfrac{a+b}{\sqrt{ab}}\right)\)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}:\left(\dfrac{a}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{b}{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}-\dfrac{a+b}{\sqrt{ab}}\right)\)

\(=\dfrac{a+\sqrt{ab}+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}:\left(\dfrac{a.\sqrt{a}.\left(\sqrt{b}-\sqrt{a}\right)+b.\sqrt{b}.\left(\sqrt{a}+\sqrt{b}\right)-\left(a+b\right)\left(b-a\right)}{\sqrt{ab}\left(b-a\right)}\right)\)

\(=\dfrac{a+b}{\sqrt{a}+\sqrt{b}}:\left(\dfrac{a\sqrt{ab}-a^2+b\sqrt{ab}+b^2-b^2+a^2}{\sqrt{ab}\left(b-a\right)}\right)\)

\(=\dfrac{a+b}{\sqrt{a}+\sqrt{b}}:\dfrac{a\sqrt{ab}+b\sqrt{ab}}{\sqrt{ab}\left(b-a\right)}\)

\(=\dfrac{a+b}{\sqrt{a}+\sqrt{b}}:\dfrac{\sqrt{ab}\left(a+b\right)}{\sqrt{ab}\left(b-a\right)}=\dfrac{a+b}{\sqrt{a}+\sqrt{b}}:\dfrac{a+b}{b-a}\)

\(=\dfrac{a+b}{\sqrt{a}+\sqrt{b}}.\dfrac{b-a}{a+b}=\dfrac{b-a}{\sqrt{a}+\sqrt{b}}=\dfrac{\left(\sqrt{b}-\sqrt{a}\right)\left(\sqrt{b}+\sqrt{a}\right)}{\sqrt{a}+\sqrt{b}}\)

\(=\sqrt{b}-\sqrt{a}\)

\(D=\left(\dfrac{a+b\sqrt{a}+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\dfrac{a}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}-\dfrac{b}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\dfrac{a+b}{\sqrt{ab}}\right)\)

\(=\left(\dfrac{a+b\sqrt{a}+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\dfrac{a\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)-b\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)-\left(a^2-b^2\right)}{\sqrt{ab}\left(a-b\right)}\)

\(=\left(\dfrac{a+b\sqrt{a}+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\dfrac{a^2-a\sqrt{ab}-b\sqrt{ab}-b^2-a^2+b^2}{\sqrt{ab}\left(a-b\right)}\)

\(=\left(\dfrac{a+b\sqrt{a}+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\dfrac{-\sqrt{ab}\left(a+b\right)}{\sqrt{ab}\left(a-b\right)}\)

\(=\dfrac{a+b+b\sqrt{a}-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\cdot\dfrac{-\left(a-b\right)}{a+b}\)

\(=\dfrac{-\left(a+b+b\sqrt{a}-\sqrt{ab}\right)\left(\sqrt{a}-\sqrt{b}\right)}{a+b}\)

24 tháng 6 2017

\(A=\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\)

\(=\left(\dfrac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+4\sqrt{a}\right)\cdot\dfrac{a-1}{\sqrt{a}}\)

\(=\left(\dfrac{2\cdot2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+4\sqrt{a}\right)\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\)

\(=\left(\dfrac{4\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+4\sqrt{a}\right)\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\)

\(=\dfrac{4\sqrt{a}+4\sqrt{a}\cdot\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\)

\(=4\sqrt{a}\cdot\left(1+\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)\right)\cdot\dfrac{1}{\sqrt{a}}\)

\(=4\left(1+a-1\right)\)

\(=4a\)

Để \(\sqrt{a}>A\) thì \(\sqrt{a}>4a\)

\(\Leftrightarrow a>\sqrt{4a}\left(đk:a\ge0\right)\)

\(\Leftrightarrow a>2\sqrt{a}\)

\(\Leftrightarrow2\sqrt{a}< a\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{a}< a\left(đk:a\ge0\right)\\2\sqrt{a}< a\left(đk:a< 0\right)\end{matrix}\right.\)

26 tháng 12 2017

\(A=\sum\sqrt{\dfrac{ab}{c+ab}}=\sum\sqrt{\dfrac{ab}{c^2+ca+cb+ab}}\)

\(=\sum\sqrt{\dfrac{ab}{\left(c+a\right)\left(c+b\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{c+a}+\dfrac{b}{c+b}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{b+a}+\dfrac{c}{b+c}\right)\)

\(=\dfrac{1}{2}.3=\dfrac{3}{2}\)

23 tháng 8 2017

\(A=\left[1:\left(1-\frac{\sqrt{a}}{1+\sqrt{a}}\right)\right]\left[\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}-a+\sqrt{a}-1}\right]\)

\(=\left[1:\left(\frac{1+\sqrt{a}-\sqrt{a}}{1+\sqrt{a}}\right)\right]\left[\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right]\)

\(=\left(1:\frac{1}{1+\sqrt{a}}\right).\frac{a+1-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+1\right)}\)

\(=\left(\sqrt{a}+1\right).\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(a+1\right)}\)

\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{a+1}=\frac{a-1}{a+1}\)

9 tháng 6 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\dfrac{a}{\sqrt{1+a^2}}=\dfrac{a}{\sqrt{ab+bc+ca+a^2}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

\(\le\dfrac{1}{4}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\). Thiết lập 2 BĐT tương tự:

\(\dfrac{b}{\sqrt{1+b^2}}\le\dfrac{1}{4}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right);\dfrac{c}{\sqrt{1+c^2}}\le\dfrac{1}{4}\left(\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(P\le\dfrac{1}{4}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{3}{4}\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)