K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2015

Biên độ: A = 16/4 = 4cm.

Biểu diễn dao động điều hòa bằng véc tơ quay. Khi vật đi từ x1 đến x2 thì véc tơ quay một góc là:

\(30+60=90^0\)

Thời gian tương ứng: \(\frac{90}{360}T=\frac{1}{4}.0,4=0,1s\)

Tốc độ trung bình: \(v_{TB}=\frac{S}{t}=\frac{2+2\sqrt{3}}{0,1}=54,64\)(cm/s)

30 tháng 9 2015

Chọn B

16 tháng 6 2016

chọn BHỏi đáp Vật lý

16 tháng 6 2016

A = s/4 = 4 cm ; \(\omega\) = 5\(\pi\)

Giả sử vị trí ban đầu của vật là tại x1. Khi đó t = 0, vì đi theo chiều dương nên góc ban đầu là 120o và ở phía dưới (vecto Fresnel).

Ta có phương trình dao động sau :

\(x=4\cos\left(5\pi t-\frac{2\pi}{3}\right)\)

\(x_2=-2.\sqrt{3}=\frac{T}{4}=0,1s\)

\(TĐTB=\frac{\Delta s}{t}=\frac{2\sqrt{3}+2}{0,1}=54,6\) cm/s

27 tháng 10 2015

Tốc độ trung bình của vật là \(v = \frac{\text{quãng đường đi được}}{t}\)

(chú ý là tốc độ trung bình khác với vận tốc trung bình vì vận tốc trung bình = \(\frac{x_{cuoi}-x_{dau}}{t}\))

Dùng đường tròn để tìm quãng đường và thời gian đi

4 -4 2 3 2 3 - M N a π/6 π/6 H K

Vật đi được từ điểm N (\(x = -2\sqrt{3}\) hường theo chiều dương của trục x) đến điểm M (\(x = 2\sqrt{3}\) hướng theo chiều dương của trục x) tức là ứng với cung \(\stackrel\frown{NaM}\)

Quãng đường đi được là: \(S = HK= 2\sqrt{3}+ 2\sqrt{3} = 4\sqrt{3}cm.\)

Thời gian đi \(t = \frac{\varphi}{\omega} = \frac{\pi/3+\pi/3}{8\pi} = \frac{1}{12}s.\)

Vận tốc trung bình là \(v = \frac{4\sqrt{3}}{1/12} = 48 \sqrt{3}cm/s.\)

Chọn đáp án. D

12 tháng 4 2020

Làm sao biết được là pi/6 vậy ạ. C chỉ giúp mình được không ạ?

9 tháng 5 2017

Đáp án C

24 tháng 12 2016

X=4cos(20pit-\(\frac{pi}{3}\))

 

Bài 3: Một con lắc đơn có chiều dài dây treo 1 m, dao động điều hòa tại nơi có gia tốc trọng trường g π2 m/s2.Số lần động năng bằng thế năng trong khoảng thời gian 4 s là A. 16. B. 6. C. 4. D. 8.Bài 4: Một vật dao động điều hoà theo phương trình x = 2cos(5πt -π/3) (cm) (t đo bằng giây).Trong khoảng thời gian từ t = 1 (s) đến t = 2 (s) vật đi qua vị trí x = 0 cm được mấy lần? A. 6 lần. B. 5 lần. C. 4...
Đọc tiếp

Bài 3: Một con lắc đơn có chiều dài dây treo 1 m, dao động điều hòa tại nơi có gia tốc trọng trường g π2 m/s2.

Số lần động năng bằng thế năng trong khoảng thời gian 4 s là A. 16. B. 6. C. 4. D. 8.

Bài 4: Một vật dao động điều hoà theo phương trình x = 2cos(5πt -π/3) (cm) (t đo bằng giây).

Trong khoảng thời gian từ t = 1 (s) đến t = 2 (s) vật đi qua vị trí x = 0 cm được mấy lần? A. 6 lần. B. 5 lần. C. 4 lần. D. 7 lần. Bài 5: Một chất điểm dao động điều hòa theo phương trình x = Acos(2πt/T + π/4) (cm). Trong khoảng thời gian 2,5T đầu tiên từ thời điểm t = 0, chất điểm đi qua vị trí có li độ x = 2A/3 là A. 9 lần. B. 6 lần. C. 4 lần. D. 5 lần.

Bài 6: Một chất điểm dao động điều hoà có vận tốc bằng không tại hai thời điểm liên tiếp là t1 = 2,2 (s) và t2 = 2,9 (s). Tính từ thời điểm ban đầu (to = 0 s) đến thời điểm t2 chất điểm đã đi qua vị trí cân bằng A. 9 lần. B. 6 lần. C. 4 lần. D. 5 lần

. Bài 7: Một vật dao động điều hoà theo phương trình: x = 2cos(5πt - π/3) (cm). Trong giây đầu tiên kể từ lúc bắt đầu dao động vật đi qua vị trí có li độ x = -1 cm theo chiều dương được mấy lần? A. 2 lần. B. 3 lần. C. 4 lần. D. 5 lần.

Bài 8: Một chất điểm dao động điều hoà tuân theo quy luật: x = 5cos(5πt - π/3) (cm). Trong khoảng thời gian t = 2,75T (T là chu kì dao động) chất điểm đi qua vị trí cân bằng của nó A. 3 lần. B. 4 lần. C. 5 lần. D. 6 lần.

Bài 9: Một chất điểm dao động điều hòa với phương trình: x = 4cos(4πt + π/3) (cm). Trong thời gian 1,25 s tính từ thời điểm t = 0, vật đi qua vị trí có li độ x = -1 cm A. 3 lần.                B. 4 lần.                 C. 5 lần.                 D. 6 lần. Bài 10: Chất điểm dao động điều hòa với phương trình: x = Acos(2πt/T + π/4) (cm). Trong thời gian 2,5T kể từ thời điểm t = 0, số lần vật đi qua li độ x = 2A/3 làπ A. 6 lần. B. 4 lần. C. 5 lần. D. 9 lần. 

0
19 tháng 10 2017

Chọn B

+ T = π/10 ⇒ ω = 2π/T = 20 rad/s

+ Trong một chu kì, vật đi được quãng đường là 4A

⇒   4 A = 40 ⇔ A = 10   c m . v = w A 2 - x 2 = 20 10 2 - 8 2 = 120 c m / s = 1 , 2 m / s

16 tháng 6 2016

Mỗi câu hỏi bạn nên hỏi 1 bài thôi để tiện trao đổi nhé.

Biểu diễn dao động bằng véc tơ quay ta có:

M x 2 1 O N

Để vật qua li độ 1 cm theo chiều dương thì véc tơ quay qua N.

Trong giây đầu tiên, véc tơ quay đã quay 1 góc là: \(5\pi\), ứng với 2,5 vòng quay.

Xuất phát từ M ta thấy véc tơ quay quay đc 2,5 vòng thì nó qua N 3 lần do vậy trong giây đầu tiên, vật qua li độ 1cm theo chiều dương 3 lần.

Bạn xem thêm lí thuyết phần này ở đây nhé 

Phương pháp véc tơ quay và ứng dụng | Học trực tuyến

16 tháng 6 2016

Bài 1 :

T = 2π / ω = 0.4 s 
Vật thực hiện được 2 chu kì và chuyển động thêm trong 0.2 s (T/2 ) nữa 
1 chu kì vật qua vị trí có li độ x=2cm theo chiều dương được "1 " lần 
⇒ 2 ________________________________________... lần 
phần lẻ 0.2s (T/2) , (góc quét là π ) (tức là chất điểm CĐ tròn đều đến vị trí ban đầu và góc bán kính quét thêm π (rad) nữa, vị trí lúc nầy: 
x = 1 + 2cos(-π/2 + π ) = 1, (vận tốc dương) vật qua vị trí có li độ x=2cm theo chiều dương thêm 1 lần nữa 
(từ VT ban đầu (vị tri +1 cm ) –> biên dương , về vị trí có ly độ x = +1 cm 
do đó trong giây đầu tiên kể từ lúc t=0 vật qua vị trí có li độ x=2cm theo chiều dương được 3 lần

Chọn A 

22 tháng 6 2016

+ Biểu diễn dao động điều hoà bằng véc tơ quay.

M N O A -A A√3/2 60 0

Trong 1/60s đầu tiên ứng với véc tơ quay từ M đến N, góc quay dễ dàng tìm được là 600.

Thời gian \(t=\dfrac{60}{360}T=\dfrac{1}{60}\Rightarrow T = 0,1s\)

\(\Rightarrow \omega = 2\pi/T=20\pi (rad/s)\)

Áp dụng công thức độc lập: \(A^2=x^2+\dfrac{v^2}{\omega^2}\Rightarrow A^2=2^2+\dfrac{(40\pi\sqrt 3)^2}{20\pi}\)

\(\Rightarrow A = 4cm\)

Pha ban đầu ứng với véc tơ quay tại M \(\Rightarrow \varphi = -\dfrac{\pi}{2} (rad/s)\)

Vậy: \(x=4\cos(20\pi t -\dfrac{\pi}{2}) (cm)\)

22 tháng 6 2016

Hỏi đáp Vật lý

Vật đi từ li độ x =0 theo chiều dương đến li độ x = \(A\sqrt{3}/2\) như hình vẽ. 

Cung quay được tương ứng có màu đỏ và bằng \(\phi = 90- \varphi = 60^0.\) (vì \(\cos\varphi = \frac{A\sqrt{3}/2}{A}= \frac{\sqrt{3}}{2} \Rightarrow \varphi = 30^0. \))

Thời gian quay là \(t = \frac{\pi/3}{\omega} = \frac{1}{60} \Rightarrow \omega = \pi/3:\frac{1}{60}=20\pi. \)(rad/s).

ADCT mối quan hệ giữa li độ, vận tốc tại li độ đó và biên độ

\(A^2 = x^2 + \frac{v^2}{\omega}=2^2+\frac{40^2\pi^2\sqrt{3}^2}{20^2\pi^2} = 16.\)

=> A = 4cm.

Do vật đi từ x = 0 theo chiều dương nên hình vào hình tròn va thấy \(\varphi = -\frac{\pi}{2}.\)

=>  \(x = 4 \cos (20\pi t - \frac{\pi}{2}).\)