K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 1 2022

Định lý Pitago đã học ở lớp 7, trong chương trình lớp 8 lẽ ra không cần giải thích lại?

Đặt 1 cạnh góc vuông của tam giác là \(\overline{ab}\) thì cạnh huyền là \(\overline{ba}\), với a;b là các chữ số từ 1 đến 9 và \(a>b\)

Đặt cạnh góc vuông còn lại là \(c\Rightarrow10\le c< 99\)

Theo định lý Pitago:

\(\left(\overline{ab}\right)^2+c^2=\left(\overline{ba}\right)^2\Leftrightarrow\left(10a+b\right)^2+c^2=\left(10b+a\right)^2\)

\(\Leftrightarrow100a^2+20ab+b^2+c^2=100b^2+20ab+a^2\)

\(\Leftrightarrow c^2=99\left(b^2-a^2\right)\)

\(\Rightarrow c^2⋮99\) \(\Rightarrow c\) chia hết cho 2 ước nguyên tố của 99 là 3 và 11

\(\Rightarrow c⋮33\Rightarrow c=\left\{33;66\right\}\)

- Với \(c=33\Rightarrow b^2-a^2=11\Leftrightarrow\left(b-a\right)\left(b+a\right)=11\)

\(\Rightarrow\left\{{}\begin{matrix}b-a=1\\b+a=11\end{matrix}\right.\) \(\Rightarrow a=5;b=6\)

- Với \(c=66\Rightarrow b^2-a^2=44\Rightarrow\left(b-a\right)\left(b+a\right)=44\)

\(\Rightarrow\left(a;b\right)=\left(10;12\right)\) đều lớn hơn 9 (loại)

Vậy 3 cạnh của tam giác vuông đó là 33; 56; 65

Đến đây thì 1 vấn đề xuất hiện, lớp 8 chưa học đường tròn, đường tròn nội tiếp thì càng không, vậy làm sao để tính bán kính đường tròn nội tiếp tam giác?

Bài 1: Cho tam giác ABC.Trên AC lấy 1 điểm B' sao cho AB'=AB, trên AC lấy điểm C' sao cho AC'=AC. CMR tứ giác BB'CC' là hình thang.Bài 2:CMR: nếu 1 tứ giác có phân giác trong của hai góc kề với một cạnh vuông góc với nhau thì tứ giác đó là hình thang.Bài 3: Cho hình thang ABCD(AB//CD). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc cạnh đáy CD:. CM AD+BC=CD.Bài 4: a)Tính số đo của các góc trong...
Đọc tiếp

Bài 1: Cho tam giác ABC.Trên AC lấy 1 điểm B' sao cho AB'=AB, trên AC lấy điểm C' sao cho AC'=AC. CMR tứ giác BB'CC' là hình thang.

Bài 2:CMR: nếu 1 tứ giác có phân giác trong của hai góc kề với một cạnh vuông góc với nhau thì tứ giác đó là hình thang.

Bài 3: Cho hình thang ABCD(AB//CD). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc cạnh đáy CD:. CM AD+BC=CD.

Bài 4: a)Tính số đo của các góc trong tứ giác ABCD, biết góc A:góc B:góc C:góc D=2:2:1:1.

b)Tứ giác ABCD là hình gì?Vì sao?

Bài 5:Cho tam giác ABC cân tại A. Kẻ các phân giác BD,CE của các góc B và C.

a)Cm: Tam giác ADB= tam giác AEC.

b)Cm: Tứ giác BEDC là hình thang cân có cạnh bên bằng 1/2 đáy.

Bài 6:Cho tam giác ABC vuông tại A có góc ABC=60 độ. Kẻ tia Ax song song với BC.Trên tia Ax lấy điểm D sao cho AD=BC.

a) Tính số đo các góc BAD và BAC.

b)Cm tứ giác ABCD là hình thang cân.

Mình đang cần gấp nên mong các bạn giải giùm mình. ^-^

2
12 tháng 6 2021

Bài 1:

a.

AB // CD

=> A + D = 1800 (2 góc trong cùng phía)

=> A = 1800 - D = 1800 - 540 = 1260

AB // CD

=> B + C = 1800 (2 góc trong cùng phía)

=> B = 1800 - C = 1800 - 1050 = 750

b.

AB // CD 

=> A + D = 1800 (2 góc trong cùng phía)

=> A = (1800 - 320) : 2 = 740

=> D = 1800 - 740 = 1060

AB // CD

=> B + C = 1800 (2 góc trong cùng phía)

=> B = 1800 : (1 + 2) . 2 = 1200

=> C = 1800 - 1200 = 600

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC

1) Cho tam giác đều ABC,gọi M là trung điểm của BC.Một góc xMy = 60 độ quay quanh điểm M sao cho 2 cạnh Mx,My luôn cắt cạnh AB và AC lần lượt tại D và E.Chứng minh :a) BD*Ce=BC2/4b)ĐM,EM lần lượt là tia phân giác của các góc BDE và CED.c)Chu vi tam giác ADE không đổi.2)tìm tất cả các tam giác vuông có số đo các cạnh là các số nguyên dương và số đo diện tích bằng số đo chu vi.3)Cho tam giác ABC vuông...
Đọc tiếp

1) Cho tam giác đều ABC,gọi M là trung điểm của BC.Một góc xMy = 60 độ quay quanh điểm M sao cho 2 cạnh Mx,My luôn cắt cạnh AB và AC lần lượt tại D và E.Chứng minh :

a) BD*Ce=BC2/4

b)ĐM,EM lần lượt là tia phân giác của các góc BDE và CED.

c)Chu vi tam giác ADE không đổi.

2)tìm tất cả các tam giác vuông có số đo các cạnh là các số nguyên dương và số đo diện tích bằng số đo chu vi.

3)Cho tam giác ABC vuông tại A(AB<AC),có AH là đường cao. Trong nửa mặt phẳng bờ AH có chứa C vẽ hình vuông AHKE.

a)Chứng minh:C<45 độ

b)Gọi P là giao điểm của AC và KE.chứng minh AB=AP

c)Gọi Q là đỉnh thứ tư của hình bình hành APQB, gọi I là giao điểm của BP và AQ. Chứng minh  ba điểm H,I,E thẳng hàng.

d)Chung minh : HE//QK

4)Cho tam giác DBC nhọn . Kẻ BM vuông CD(M thuộc CD),CA vuông BD (A thuộc BD).gọi I là trung điểm của AB ,qua I kẻ đường thẳng vuông góc với AB và cắt CB tại O;qua M kẻ đường thẳng vuông góc với MO cắt DA tại K . Chứng minh KA*KB=KM​2

0

a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ

nên AMDN là hình chữ nhật

Suy ra: AD=MN

b: Xét tứ giác AMHD có góc AMD=góc AHD=90 độ

nên AMHD là tứ giác nội tiếp

=>A,M,H,D cùng thuộc 1 đường tròn (1)

Xét tứ giác AMDN có góc AMD+góc AND=180 độ

nên AMDN là tứ giác nội tiếp

=>A,M,D,N cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra A,M,H,D,N cùg thuộc 1 đường tròn

=>AMHN là tứ giác nội tiếp

=>góc AHM=90 độ

Giúp mình nha mình đang cần ghấp để làm đề cươngBài 9: Cho tam giác ABC vuông tại A, D là trung điểm của BC. Gọi M, N lần lượt là hình chiếu của điểm D trên cạnh AB, AC.a. Chứng minh tứ giác ANDM là hình chữ nhật.b. Gọi I, K lần lượt là điểm đối xứng của N, M qua D. Tứ giác MNKI là hình gì? Vì sao?c. Kẻ đường cao AH của tam giác ABC (H thuộc BC). Tính số đo góc MHN.Bài 10. Cho tam giác ABC...
Đọc tiếp

Giúp mình nha mình đang cần ghấp để làm đề cương

Bài 9: Cho tam giác ABC vuông tại A, D là trung điểm của BC. Gọi M, N lần lượt là hình chiếu của điểm D trên cạnh AB, AC.

a. Chứng minh tứ giác ANDM là hình chữ nhật.

b. Gọi I, K lần lượt là điểm đối xứng của N, M qua D. Tứ giác MNKI là hình gì? Vì sao?

c. Kẻ đường cao AH của tam giác ABC (H thuộc BC). Tính số đo góc MHN.

Bài 10. Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi D là trung điểm của AB, E là điểm đối xứng với M qua D.

a. Chứng minh rằng điểm E đối xứng với điểm M qua AB.

b. Các tứ giác AEMC, AEBM là hình gì? Vì sao?

c. Cho BC = 4cm, tính chu vi tứ giác AEBM

Bài 11. Tính số đo mỗi góc của ngũ giác đều, lục giác đều, n – giác đều.

Bài 12. Tính số đo mỗi góc ngoài của lục giác đều.

Bài 13. Một hình chữ nhật có diện tích 15m2. Nếu tăng chiều dài 2 lần, tăng chiều rộng 3 lần thì diện tích sẽ thay đổi như thế nào?

Bài 14: Cho tam giác AOB vuông tại O với đường cao OM (M thuộc AB). CM: AB.OM = OA.OB.

2
14 tháng 12 2016

lm đc rùi mk cm ơn

27 tháng 11 2018

bạn vẽ hình ra mình làm cho!

9 tháng 8 2017

a,b,c là số đo các cạnh của tam giác nên là các số dương, dễ thấy x>y;z

nếu x;y;z là số đo các cạnh của 1 tam giác vuông khác thì x là cạnh huyền

ta xét x2=y2+z2 <=> \(\left(9a+4b+8c\right)^2=\left(4a+b+4c\right)^2+\left(8a+4b+7c\right)^2\)

<=> 81a2+16b2+64c2+72ab+64bc+144ca=80a2+17b2+65c2+72ab+64bc+144ca

<=>a2=b2+c2(đúng do a;b;c là số đo 3 cạnh của 1 tam giác vuông với a độ dài là cạnh huyền,áp dụng định lý Pytago)

Ta đã chứng minh được : x2=y2+z2 .Theo định lý Pytago đảo suy ra x;y;z cũng là số đo 3 cạnh của 1 tam giác vuông 

Ta có a,b,c là số đo các cạnh của tam giác nên là các số dương.

Ta thấy x>y;z
Nếu x;y;z là số đo các cạnh của 1 tam giác vuông khác thì x là cạnh huyền
Xét x^2=y^2+z^2 <=>( 9a + 4b + 8c)^2 = (4a + b + 4c)^2+ (8a + 4b + 7c)^2
<=> 81a^2+64c^2+72ab+64bc+144ca=80a^2+17b2^+65c^2+72ab+64bc+144ca
<=>a^2=b^2+c^2
 do a;b;c là số đo 3 cạnh của 1 tam giác vuông với a độ dài là cạnh huyền,

Áp dụng định lý Pytago.Ta chứng minh được :

x^2=y^2+z^2
=> x;y;z là số đo 3 cạnh của 1 tam giác vuông (Theo định lý Pytago đảo )

NHỚ TK MK NHALưu Đức Mạnh

a,Xét tg ABC có:                                                  Góc A=90*,Góc M=90*,Góc N=90*                         <=>Tứ giác AMDN là hcn(vì có gócA=góc M=góc N=90*)