Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi x là thời gian ô tô đi từ m
ta có : 270-65x=1/2
270-65x=135-20x
135=45x
x=135:45
x=3
vậy 3 giờ
Quãng đường AB dài 540 Km; nửa quảng dường AB dài 270 Km. Gọi quãng đường ô tô và xe máy đã đi là \(S_1,S_2\). Trong cùng 1 thời gian thì quãng đường tỉ lệ thuận với vận tốc do đó \(\frac{S_1}{v_1}=\frac{S_2}{v_2}=t\) (t chính là thời gian cần tìm).
Theo đề bài, ta có: \(270-65x=\frac{1}{2}\left(270-40x\right)\)
\(\Leftrightarrow270-65x=132-20x\)
\(\Leftrightarrow270-135=-20x+65x\)
\(\Leftrightarrow135=45x\)
\(\Rightarrow x=\frac{135}{45}=3\left(giờ\right)\)
Vậy sau khi khởi hành sau 3 giờ thì ô tô cách M một khoảng bằng 1/2 khoảng cách từ xe máy đến M.
Bài làm:
Gọi x là thời gian đi được đến khi ô tô cách điểm M (M là điểm chính giữa quãng đường AB) một khoảng bằng 1/2 khoảng cách từ xe máy đến M.
Ta có quãng đường ô tô đi được là 270 - 65x = 1/2 (270 - 40x)
Giải phương trình ta được x = 3.
Vậy sau 3 giờ thì ô tô cách điểm M (M là điểm chính giữa quãng đường AB) một khoảng bằng 1/2 , khoảng cách từ xe máy đến M.
nếu mk giải ra cho bn thì bn
kb với mk nha
chỉ 1 lần thôi
Quãng đường AB dài 540 km
Nửa quãng đường AB là :
540:2= 270 ( km )
Gọi quãng đường ô tô và xe máy đã đi là s1 , s2
Trong cùng một thời gian thì quãng đường tỉ lệ thuận với vận tốc do đó
\(\frac{s_1}{v_1}\) = \(\frac{s_2}{v_2}\) = t ( t chính là thời gian cần tìm )
t= \(\frac{270-a}{65}\) = \(\frac{270-2a}{40}\)
t= \(\frac{540-2a}{130}\) = \(\frac{270-2a}{40}\) = \(\frac{\left(540-2a\right)-\left(270-2a\right)}{130-40}\) = \(\frac{270}{90}\) = 3
Vậy sau khi khởi hành 3 giờ thì ô tô cách M một khoảng bằng \(\frac{1}{2}\) khoảng cách từ xe máy đến M