Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2)
Giả sử \(n=2018\) thì tồn tại đẳng thức \(a_1a_2+a_2a_3+...+a_na_1=0\)
Các số hạng có dạng \(a_ia_j\) trên đều chỉ có thể nhận giá trị \(1\) hoặc \(-1\). Có tất cả $2018$ số hạng như vậy, mà tổng của chúng lại bằng $0$ nên phải tồn tại \(\frac{2018}{2}=1009\) số hạng có giá trị $1$ và \(\frac{2018}{2}=1009\) số hạng có giá trị $-1$
\(\Rightarrow a_1a_2.a_2a_3.....a_na_1=(1)^{1009}(-1)^{1009}=-1\)
Mà \(a_1a_2a_2a_3....a_na_1=(a_1a_2....a_n)^2=1\)
Do đó điều giả sử là vô lý
Vậy \(n\) không thể bằng $2018$
TH tổng quát ta chứng minh được rằng \(n\) phải chia hết cho \(4\) .
nhận thấy: các số hạng của D đều cách nhau 2 đv
Số số hạng: (998-10):2+1=495 (số hạng)
=>\(D=\frac{\left(998+10\right).495}{2}=249480\)
làm vậy có phải nhanh hơn ko?
Giả sử ∆ABC có AD là phân giác và DB = DC, ta chứng minh ∆ABC cân tại A
Kéo dài AD một đoạn DA1 = AD
Ta có: ∆ADC = ∆A1DC (c.g.c)
Nên
mà (gt)
=>
=> ∆ACA1 cân tại C
Ta lại có: AB = A1C ( ∆ADB = ∆A1DC)
AC = A1C ( ∆ACA1 cân tại C)
=> AB = AC
Vậy ∆ABC cân tại A
Xác định hàm số f(x) thoả mãn các điều kiện : f(0) = 0=> hàm số có dạng f(x)=ax; f(2) = 2016 và f(x1)/x1=f(x2)/x2 với x1 và x2 là hai giá trị bất kì khác 0 của x => 2006/2= ax2/x2=>2006x2=2ax2=>a=2006:2=1003 =>a=1003