K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2018

Gọi a và b lần lượt là chiều dài và chiều rộng

Chu vi là

( a + b) x 2   (1)

Khi tăng hiều dài 5m và tăng chiều rộng 3m thì diện tích sẽ tăng 225m2

 ( a + 5 ) * ( b + 3 ) - ab = 225 (2)

Từ (1) (2) ta lập đc hệ pt sau

\(\hept{\begin{cases}\left(a+b\right)\cdot2=124\\\left(a+5\right)\left(b+3\right)-ab=225\end{cases}}\Leftrightarrow\hept{\begin{cases}2a+2b=124\\3a+5b=210\end{cases}}\Leftrightarrow\hept{\begin{cases}a=50\\b=12\end{cases}}\)

Vậy chiều dài là 50 cm 

Chiều rộng là 12 cm 

cho mik hoi phan a+5 b=3 - ab =225 ma sao bien doi dc 3a+5b=210 vay a

 

14 tháng 5 2021

gọi AB,BC thứ tự là chiều dài và chiều rộng của hcn

diện tích hcn là:AB.BC

vì sau khi tăng chiều dài 5m, chiều rộng 3m thì S tăng thêm 255 m2 nên ta có phương trình

(AB+5).(BC+3)-AB.BC=255

<=>AB.BC+3.AB+5.BC+15-AB.BC=255

<=>3.AB+5.BC=240(1)

mà AB+BC=62=>3.AB+3.BC=186(2)

trừ cả 2 vế của (1) và (2) ta được

3.AB+5.BC-3.AB-3.BC=240-186

<=>2.BC=54<=>BC=27(m)

=>AB=35(m)

Vậy AB=35m,BC=27m

Gọi chiều rộng là x

Chiều dài là 60-x

Theo đề, ta có: (63-x)(x+5)=x(60-x)+265

\(\Leftrightarrow63x+315-x^2-5x=60x-x^2+265\)

=>58x+315=60x+265

=>-2x=-50

=>x=25

Vậy: Chiều rộng là 25m

Chiều dài là 35m

AH
Akai Haruma
Giáo viên
18 tháng 12 2021

Lời giải:
Gọi chiều dài và chiều rộng ban đầu là $a$ và $b$ (m)

Diện tích ban đầu:

$ab$ 

Sau khi tăng chiều rộng 2m, giảm chiều dài 5m thì diện tích là:

$(a-5)(b+2)$ 

Nếu tăng mỗi chiều hcn lên 5m thì diện tích là: $(a+5)(b+5)$ 

Ta có:

\(\left\{{}\begin{matrix}ab=\left(a-5\right)\left(b+2\right)\\\left(a+5\right)\left(b+5\right)-ab=225\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a-5b=10\\5a+5b=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=30\\b=10\end{matrix}\right.\) (m)

Chu vi hình chữ nhật:

$2(a+b)=2(30+10)=80$ (m)

11 tháng 3 2016

gọi chiều dài thửa ruộng là x(m) chiều rộng là y(m) ( x,y>o)

diện tích thửa ruộng là x.y (m2)

nếu tăng chiều dài thêm 2 và tăng chiều rộng thêm 3 thì diện tích thửa ruộng lúc này là (x+2)(y+3)=100+xy

nếu cùng giảm cả chiều dài và chiều rộng là 2m thì diện tích lúc này là (x-2)(y-2)=68-xy 

từ đó ta tìm được diện tích là 308m2

AH
Akai Haruma
Giáo viên
29 tháng 1 2023

Lời giải:
Gọi chiều dài và chiều rộng của mảnh đất lần lượt là $a,b$ (m)

Theo bài ra ta có:

$a+b=80:2=40(1)$
$(a+3)(b+5)=ab+195$

$\Leftrightarrow 5a+3b=180(2)$

Từ $(1); (2)\Rightarrow a=30; b=10$ (m)

 

21 tháng 1 2022

Gọi chiều dài của mảnh đất hcn là x(m),chiều rộng của mảnh đất hcn là y(m) (0<y<x).
Diện tích ban đầu của mảnh đất đó là : xy(m2).

Sau khi tăng chiều dài 2m và chiều rộng thêm 5m thì diện tích mới của mản đất đó là:(x+2)(y=5)  (m2). (1)

Vì nếu tăng chiều dài 2m và chiều rộng thêm 5m thì diện tích tăng thêm 120m2,nên ta có pt:(x+2)(y=5) -xy=120.
Sau khi giảm chiều dài 3m và chiều rộng đi 2m thì diện tích của mảnh đất đó là: (x-3)(y-2) (m2).
Vì Nếu giảm chiều dài 3m và chiều rộng đi 2m thì diện tích giảm 60m2,nên ta có pt : xy-(x-3)(y-2)=60. (2) 

  • Còn lại hệ pt tự giải nốt nhé

Bài 11: 

Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))

Vì chu vi của mảnh đất là 90m nên ta có phương trình:

\(2\cdot\left(x+y\right)=90\)

\(\Leftrightarrow x+y=45\)(1)

Diện tích ban đầu của mảnh đất là: \(xy\left(m^2\right)\)

Vì khi giảm chiều dài đi 5m và giảm chiều rộng đi 2m thì diện tích giảm 140m2 nên ta có phương trình:

\(\left(x-5\right)\left(y-2\right)=xy-140\)

\(\Leftrightarrow xy-2x-5y+10-xy+140=0\)

\(\Leftrightarrow-2x-5y+150=0\)

\(\Leftrightarrow-2x-5y=-150\)

\(\Leftrightarrow2x+5y=150\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}x+y=45\\2x+5y=150\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+2y=90\\2x+5y=150\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-60\\x+y=45\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=20\\x=45-y=45-20=25\end{matrix}\right.\)(thỏa ĐK)

Diện tích mảnh đất là:

\(x\cdot y=25\cdot20=500\left(m^2\right)\)

Vậy: Diện tích mảnh đất là 500m2

Bài 12:

Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))

Vì chu vi của mảnh đất là 80m nên ta có phương trình:

\(2\cdot\left(x+y\right)=80\)

\(\Leftrightarrow x+y=40\)(3)

Diện tích ban đầu của mảnh đất là:

\(xy\left(m^2\right)\)

Vì khi tăng chiều dài thêm 3m và tăng chiều rộng thêm 5m thì diện tích tăng thêm 195m2 nên ta có phương trình:

\(\left(x+3\right)\left(y+5\right)=xy+195\)

\(\Leftrightarrow xy+5x+3y+15-xy-195=0\)

\(\Leftrightarrow5x+3y-180=0\)

\(\Leftrightarrow5x+3y=180\)(4)

Từ (3) và (4) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}x+y=40\\5x+3y=180\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+5y=200\\5x+3y=180\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y=20\\x+y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40-y=40-10=30\\y=10\end{matrix}\right.\)(thỏa ĐK)

Vậy: Chiều dài của mảnh đất là 30m

Chiều rộng của mảnh đất là 10m

16 tháng 11 2021

Nửa cv là 80:2=40(m)

Gọi cd là a(m;0<a<40)

Ta có cr là 40-a(m)

Theo đề ta có pt:

\(\left(a+3\right)\left(40-a+5\right)=a\left(40-a\right)+195\\ \Leftrightarrow-a^2+42a+135=40a-a^2+195\\ \Leftrightarrow2a=60\\ \Leftrightarrow a=30\)

Vậy cd là 30m; cr là 10m