Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng đl Vi-ét vào pt ta có:
x1+x2=-1.5
x1 . x2= -13
C=x1(x2+1)+x2(x1+1)
= 2x1x2 + x1+x2
= 2.(-13) -1.5
= -26 -1.5
= -27.5
a, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-\frac{3}{2}\\x_1x_2=\frac{c}{a}=-13\end{cases}}\)
Ta có : \(C=x_1\left(x_2+1\right)+x_2\left(x_1+1\right)=x_1x_2+x_1+x_1x_2+x_2\)
\(=-13-\frac{3}{2}-13=-26-\frac{3}{2}=-\frac{55}{2}\)
Theo vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2017^{2018}\\x_1.x_2=1\end{cases}}\)
Ta lại có:
\(y_1+y_2=x_1^2+1+x_2^2+1=\left(x_1+x_2\right)^2-2x_1.x_2+2=2017^{4036}\)
\(y_1.y_2=\left(x_1^2+1\right)\left(x_2^2+1\right)=x_1^2+x_2^2+1+x_1^2.x_2^2=\left(x_1+x_1\right)^2+\left(x_1.x_2\right)^2-2x_1.x_2+1=2017^{4036}\)
Vậy phương trình mới là:
\(Y^2-2017^{4036}Y+2017^{4036}=0\)
a) tự làm
b) m=-2 (1) <=>2x^2 +6x-5 =0 (2) kq (a) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-\dfrac{6}{2}=-3\\x_1.x_2=-\dfrac{5}{2};=>\left(x_1;x_2\ne0\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}y_1=\dfrac{x_1}{x_2}\\y_2=\dfrac{x_2}{x_1}\end{matrix}\right.\) \(\Leftrightarrow\)\(\left\{{}\begin{matrix}y_1+y_2=\dfrac{x_1^2+x_2^2}{x_1.x_2}=\dfrac{\left(x_1+x_2\right)^2}{x_1.x_2}-2\\y_1.y_2=\dfrac{x_1.x_2}{x_2.x_1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y_1+y_2=\dfrac{-28}{5}\\y_1.y_2=1\end{matrix}\right.\)
phương trình bậc hai cần tìm
\(5y^2-28y+5=0\)
\(\Delta'=\left(m-1\right)^2+m=m^2+m+1=\left(m+\frac{1}{2}\right)^2+\frac{3}{4}>0\) \(\forall m\)
\(\Rightarrow\) Phương trình luôn có nghiệm với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m\end{matrix}\right.\)
Do phương trình ẩn y có nghiệm \(\left\{{}\begin{matrix}y_1=x_1+\frac{1}{x_2}\\y_2=x_2+\frac{1}{x_1}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2+\frac{1}{x_1}+\frac{1}{x_2}\\y_1y_2=\left(x_1+\frac{1}{x_2}\right)\left(x_2+\frac{1}{x_1}\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2+\frac{x_1+x_2}{x_1x_2}\\y_1y_2=x_1x_2+\frac{1}{x_1x_2}+2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=2\left(m-1\right)+\frac{2\left(m-1\right)}{-m}\\y_1y_2=-m-\frac{1}{m}+2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=\frac{-m\left(2m-2\right)+2m-2}{-m}=\frac{2\left(m-1\right)^2}{m}\\y_1y_2=\frac{-m^2+2m-1}{m}=-\frac{\left(m-1\right)^2}{m}\end{matrix}\right.\)
Theo Viet đảo, \(y_1\) và \(y_2\) là nghiệm của:
\(y^2-\frac{2\left(m-1\right)^2}{m}y-\frac{\left(m-1\right)^2}{m}=0\)
\(\Leftrightarrow my^2-2\left(m-1\right)^2-\left(m-1\right)^2=0\) (\(m\ne0\))
\(x^2-5x-6=0\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_1=1\\y_2=6^4=1296\end{matrix}\right.\)
Phương trình bậc 2 cần lập có dạng:
\(\left(y-1\right)\left(y-1296\right)=0\Leftrightarrow y^2-1297y+1296=0\)
chắc 2 bạn là một: https://olm.vn/thanhvien/perfectonedirection
Không bik là đơn giản như bạn nói thật không , nhưng mik chx học tới dạng này :v
Không đơn giản thì nói làm gì.