Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C G F E D Q P
a) Ta dễ thấy ^ABF = ^BAF = ^BAD = ^CAD = ^ACE = ^CAE. Suy ra \(\Delta\)ABF ~ \(\Delta\)ACE (g.g) (đpcm).
b) Gọi BE cắt CF tại G. Áp dụng hệ quả ĐL Thales, kết hợp với \(\Delta\)ABF ~ \(\Delta\)ACE ta có:
\(\frac{GC}{GF}=\frac{CE}{FB}=\frac{AC}{AB}\). Mà \(\frac{AC}{AB}=\frac{DC}{DB}\)(ĐL đường phân giác trong tam giác) nên \(\frac{GC}{GF}=\frac{DC}{DB}\)
Do đó GD // BF // CE (ĐL Thales đảo). Lại có AD // BF // CE nên A,G,D thẳng hàng
Vậy thì AD,BE,CF cắt nhau tại G (đpcm).
c) Chú ý GQ // AE suy ra ^AGQ = ^GAE = ^GAF, đồng thời có AG // QF. Suy ra AFQG là hình thang cân (1)
Mặt khác BF // CE dẫn đến ^GFQ = ^GCE = ^GPQ. Từ đây bốn điểm P,Q,F,G cùng thuộc một đường tròn (2)
Từ (1) và (2) suy ra các điểm A,P,G,Q,F cùng thuộc một đường tròn (đpcm).
A B C D M Q N P I
gọi I là giao điểm của QM và BD
Áp dụng định lí Mê-nê-la-uyt cho \(\Delta ABD\)
\(\frac{AQ}{QD}.\frac{ID}{IB}.\frac{MB}{MA}=1\)
vì Q,M,I thẳng hàng , kết hợp với MA = QA suy ra \(\frac{MB}{QD}.\frac{ID}{IB}=1\)
Ta có : MB = NB ; DP = DQ ; PC = NC
nên \(\frac{NB}{DP}.\frac{ID}{IB}=1\Rightarrow\frac{PC}{PD}.\frac{ID}{IB}.\frac{NB}{NC}=1\)
do đó , theo định lí Mê-nê-la-uyt thì I,N,P thẳng hàng
từ đó ta được đpcm
A B C D E F O I X Y Z M N P J S T R K L V G U Q
Gọi giao điểm thứ hai của AZ,BZ,CZ với đường tròn (O) là S,T,R. Cho đường thẳng DF cắt các đoạn ST,RT lần lượt tại K,L. Gọi AK giao CL tại V. Gọi Q là trung điểm đoạn DF.
Trước hết, ta thấy: 5 điểm A,R,S,C,T cùng thuộc (O), AV cắt RT tại K, AS cắt CR ở Z, CV cắt ST ở L
Đồng thời có bộ điểm: (K Z L) thẳng hàng. Suy ra: Hệ điểm (A R V S C T) cùng thuộc 1 đường tròn (ĐL Pascal đảo)
Áp dụng ĐL Con Bướm cho 4 điểm A,B,S,T trên (O) thì có Z là trung điểm của FL. Mà P là trung điểm CF
Nên ZP là đường trung bình của \(\Delta\)FLC => ZP // CL. Tương tự: ZM // AK
Do đó: 2 góc ^MZP và ^AVC có 2 cặp cạnh song song => ^MZP = ^AVC = ^ABC (Do V thuộc (O) cmt)
Dễ thấy MQ là đường trung bình \(\Delta\)ADF => MQ // AB. Tương tự: QP // BC => ^MQP = ^ABC
Từ đó: ^MZP = ^MQP => Tứ giác MZQP nội tiếp đường tròn.
Nếu ta gọi trung điểm của DE,EF thứ tự là G,U thì như lập luận trên, các tứ giác NPUX, MYGN nội tiếp
Ta sẽ chứng minh các đường tròn (MPQ),(NPU),(MNG) đồng quy
Thật vậy: Gọi giao điểm thứ hai của (MPQ) và (NPU) là J => ^NJM = ^MJP + ^NJP = ^MQP + ^NUP
Bằng tính chất đường trung bình, góc có cặp cạnh song song dễ có:
^MQP = ^ABC, ^NUP = ^BAC => ^NJM = ^ABC + ^BAC = 1800 - ^ACB = ^MGN
Suy ra: Tứ giác MJNG nội tiếp => (MNG) cũng đi qua J => (MPQ),(NPU),(MNG) đồng quy
Hay 3 đường tròn (NPX),(YMN),(ZNP) đồng quy (tại J) (đpcm).
(P/S: Đề sai nhé, phải là (XNP),(YNM),(ZNP) đồng quy)
Hình khá khó nhìn nhé! Vào thống kê mình xem
Link: https://imgur.com/a/h2NM0ep
Đặt x là giao của AD và BE, Y là giao CF và AD; Z là giao BE và DF
Theo định lí Pascal thì M,X,Q; P,S,Y và R,Z,N là các bộ 3 điểm thẳng hàng
Xét tam giác XED có DF,CE, XQ đồng quy
Theo định lý Ceva có:
\(\frac{\sin\widehat{QXE}}{\sin\widehat{QXD}}\cdot\frac{\sin\widehat{ADF}}{\sin\widehat{EDF}}\cdot\frac{\sin\widehat{CED}}{\sin\widehat{CEB}}=1\)
\(\Rightarrow\frac{\sin\widehat{QXE}}{\sin\widehat{QXD}}=\frac{\sin\widehat{ADF}}{\sin\widehat{EDF}}\cdot\frac{\sin\widehat{CED}}{\sin\widehat{CEB}}=\frac{EF}{AF}\cdot\frac{CB}{CD}\)
Lập các tỉ số tương tự và nhân chúng lại với nhau, áp dụng định lý Ceva lần nữa cho tam giác XYZ ta có: XQ, YS, ZN đồng quy
hay MQ, PS, NR đồng quy (đpcm)
Goi AD giao BE tai X
Theo dinh ly Pascal ta se co MQ,PS,NR dong quy tai X
dpcm