Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x4 - x3 -2x2 -x +2=0
=> (2x4- 2x3) +(x3-x2) -(x2 -x) -(2x-2)=0
=>(x-1)(2x3+x2-x-2)=0
=>(x-1)2( 2x2+3x+2)=0 ( vì 2x2+3x+2>0)
=> x-1=0 => x =1
Vì x = 0 ko là nghiệm của phương trình
Chia 2 vế cho x2 ≠ 0 ta đc \(2\left(x^2+\frac{25}{x}\right)-21\left(x+\frac{5}{x}\right)+74=0\)
Đặt \(t=x+\frac{5}{x}\) thì \(t^2=x^2+\frac{25}{x^2}+10\)
Phương trình trở thành: \(2\left(t^2-10\right)-21t+74=0\Leftrightarrow2t^2-21t+54=0\Leftrightarrow t=6,t=\frac{9}{2}\)
Khi \(t=6\) ta có phương trình \(x+\frac{5}{x}=6\Leftrightarrow x^2-6x+5=0\Leftrightarrow x=1\) hoặc \(x=5\)
Khi \(t=\frac{9}{2}\) ta có phương trình \(x+\frac{5}{x}=\frac{9}{2}\Leftrightarrow2x^2-9x+10=0\Leftrightarrow x=2\) hoặc \(x=\frac{5}{2}\)
Vậy...
I Don't No
~~ tk nha ~`
─(♥)(♥)(♥)────(♥)(♥)(♥) __ ɪƒ ƴσυ’ʀє αʟσηє,
──(♥)██████(♥)(♥)██████(♥) ɪ’ʟʟ ɓє ƴσυʀ ѕɧα∂σѡ.
─(♥)████████(♥)████████(♥) ɪƒ ƴσυ ѡαηт тσ cʀƴ,
─(♥)██████████████████(♥) ɪ’ʟʟ ɓє ƴσυʀ ѕɧσυʟ∂єʀ.
──(♥)████████████████(♥) ɪƒ ƴσυ ѡαηт α ɧυɢ,
────(♥)████████████(♥) __ ɪ’ʟʟ ɓє ƴσυʀ ρɪʟʟσѡ.
──────(♥)████████(♥) ɪƒ ƴσυ ηєє∂ тσ ɓє ɧαρρƴ,
────────(♥)████(♥) __ ɪ’ʟʟ ɓє ƴσυʀ ѕɱɪʟє.
─────────(♥)██(♥) ɓυт αηƴтɪɱє ƴσυ ηєє∂ α ƒʀɪєη∂,
───────────(♥) __ ɪ’ʟʟ ʝυѕт ɓє ɱє.
Nhận xét : P > 0
P đạt giá trị nhỏ nhất <=> \(P^2\) đạt giá trị nhỏ nhất.
Ta có : \(P^2=\frac{\left(a^2+b^2+1\right)^2}{\left(a-b\right)^2}=\frac{\left(a^2+b^2\right)^2+2\left(a^2+b^2\right)+1}{\left(a^2+b^2\right)-2ab}\)
\(=\frac{\left(a^2+b^2\right)^2+2\left(a^2+b^2\right)+1}{a^2+b^2-8}\)
Đặt \(t=a^2+b^2,P^2=y\) \(\Rightarrow y=\frac{t^2+2t+1}{t-8}\)
\(\Rightarrow y\left(t-8\right)=t^2+2t+1\Leftrightarrow t^2+t\left(2-y\right)+\left(1+8y\right)=0\)
Để pt có nghiệm thì \(\Delta=\left(2-y\right)^2-4\left(1+8y\right)=y^2-36y\ge0\)
\(\Leftrightarrow y\left(y-36\right)\ge0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}y\ge36\left(\text{nhận}\right)\\y\le0\left(\text{loại}\right)\end{array}\right.\)
Suy ra \(y=P^2\ge36\Rightarrow P\ge6\).
Dấu "=" xảy ra khi \(\frac{\left(t+1\right)^2}{t-8}=36\Leftrightarrow t=17\)
\(\Rightarrow\begin{cases}ab=4\\a^2+b^2=17\end{cases}\) \(\Leftrightarrow\begin{cases}a=4\\b=1\end{cases}\) (vì a > b)
Vậy P đạt giá trị nhỏ nhất bằng 6 khi (a;b) = (4;1)
Nhân cả 2 vế với \(\left(x+\sqrt{x^2+5}\right)\left(y+\sqrt{y^2+5}\right)\)ta được 25=5\(\left(x+\sqrt{x^2+5}\right)\left(y+\sqrt{y^2+5}\right)\)
<=> \(\left(x+\sqrt{x^2+5}\right)\left(y+\sqrt{y^2+5}\right)\)= 5 = \(\left(x-\sqrt{x^2+5}\right)\left(y-\sqrt{y^2+5}\right)\)
khai triển và rút gọn ta được \(x\sqrt{y^2+5}=-y\sqrt{x^2+5}\)
Nếu x=y=0 => M=0
xét x;y khác 0
\(\frac{\sqrt{x^2+5}}{\sqrt{y^2+5}}=\frac{-x}{y}\left(\frac{x}{y}< 0\right)\)<=>\(\frac{x^2+5}{y^2+5}=\frac{x^2}{y^2}=\frac{x^2+5-x^2}{y^2+5-y^2}=1=>\frac{x^2}{y^2}=1=>\frac{x}{y}=-1\left(\frac{x}{y}< 0\right).\)
hay x=-y => M= (-y)2017 +y2017 =0
vậy M=0
Ta có \(xy\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\)
<=>\(x\left(x^2y^3-2x^2y-y+4y^2+2\right)=1\)
=> \(x^2y^3-2x^2y-y+4y^2+2=\frac{1}{x}\)
Do VT là số nguyên với x,y nguyên
=> \(\frac{1}{x}\)nguyên => \(x=\pm1\)
+ \(x=1\)=> \(y^3-3y+4y^2+1=0\)( không có nghiệm nguyên)
+ x=-1
=> \(y^3-3y+4y^2+3=0\)( không có nghiệm nguyên )
=> PT vô nghiệm
Vậy PT vô nghiệm
\(2x^4-21x^3+74x^2-105x+50=0\)
\(< =>2x^4-10x^3-11x^3+55x^2+19x^2-95x^2-10x+50=0\)
\(< =>2x^3\left(x-5\right)-11x^2\left(x-5\right)+19x\left(x-5\right)-10\left(x-5\right)=0\)
\(< =>\left(x-5\right).\left(2x^3-11x^2+19x-10\right)=0\)
\(< =>\left(x-5\right).\left(2x^3-2x^2-9x^2+9x+10x-10\right)=0\)
\(< =>\left(x-5\right).\left(x-1\right).\left(2x^2-9x+10\right)=0\)
\(2x^2-9x+10\ge0\)
\(< =>x=5\)hoặc \(x=1\)
Vậy S = 1 hoặc 5