K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2016

D/S: 2357,5

5 tháng 3 2016

số số hạng : ( 99,100 - 1,2 ) : 2,2 + 1 = 45,5

tổng : ( 99,1 + 1,2 ) x 45,5 : 2 = 2281,825

B = 2281,825

A=1-2-3+4+5-6-7+8+...+97-98-99+100

=>A=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)

=>A=0+0+....+0=0

vậy A=0

B=1-2+2^2-2^3+...+2^100

=>2B=2-2^2+2^3-2^4+....+2^101

=>2B+B=1-2^101=3B

=>B=1-2^101/3

C= 2^100-2^99-2^98-...-2^2-2-1

=>C=2^100-(2^99+2^98+.....+2^2+2+1)

Đặt D=2^99+2^98+.....+2^2+2+1

=>2D=2^100+2^99+.....+2^3+2^2+2

=>2D-D=2^100-1=D

=>C=2^100-(2^100-1)=1

tick nha

16 tháng 1 2016

hic!ngày kia phải nộp rồi ! mọi người giúp mình nhanh nha!

 

5 tháng 1 2017

theo mình nghĩ là như th61 này

\(2\cdot2^{99}-2^{99}=2^{99}\)

\(2^{99}=2\cdot2^{98}\)

\(2\cdot2^{98}-2^{98}=2^{98}\)

vậy tức là \(2^n-2^{n-1}=2^{n-1}\)

đến cuối bạn sẽ có \(2^3-2^2=4\)

4-2-1=1

28 tháng 2 2020

1+ 3-2 + 5-4 + 7-6 + ... + 99-98 - 100 = 
1 + (1 + 1 + 1 + 1 + 1 + ... + 1) - 100 =................(trong ngoặc có 49 số 1 vì 49 x 2 + 1 =99) 
= 1 + 49 - 100 = âm 50. 
Hoặc có cách này: 
1 + 3 + 5 + ... + 97 + 99 - (2 + 4 + 6 + ... + 100) = - 50.

mấy cái kia tg tự

6 tháng 1 2017

1+3-2+5-4+7-6+...+99-98-100

1+(1+1+1+1+1+........+1)-100=....( trong ngoặc có 49 số vì 49.2+1=99)

=1+49-100

=-50

4 tháng 11 2017

mình nghĩ = -2525

4 tháng 11 2017

ai biet giai nhanh ma ro ra nhe

11 tháng 9 2023

=(1-2)-(3-4)+(5-6)-(7-8)+...+(2021-2022)-2023
=(-1)-(-1)+(-1)-...+(-1)-2023
=0-2023
=-2023

16 tháng 8 2019

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)......\left(1-\frac{1}{204}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{203}{204}\)

\(=\frac{1}{204}\)

16 tháng 8 2019

\(\text{Sửa đề }\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times....\times\left(1-\frac{1}{203}\right)\times\left(1-\frac{1}{204}\right)\)

\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times....\times\frac{202}{203}\times\frac{203}{204}\)

\(=\frac{1\times2\times3\times...\times202\times203}{2\times3\times4\times...\times203\times204}\)

\(=\frac{1}{204}\)