K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2016

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)

\(\Leftrightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)

\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)

Trừ cả hai vế cho \(a^2x^2+b^2y^2+c^2z^2\), có :

\(a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2=2axby+2bycz+2axcz\)

\(\Rightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2axby-2bycz-2axcz=0\)

\(\left(a^2y^2+b^2x^2-2axby\right)+\left(a^2z^2+c^2x^2-2axcz\right)+\left(b^2z^2+c^2y^2-2bycz\right)=0\)

\(\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)

Mà \(\hept{\begin{cases}\left(ay-bx\right)^2\ge0\\\left(az-cx\right)^2\ge0\\\left(bz-cy\right)^2\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}ay-bx=0\\az-cx=0\\bz-cy=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}ay=bx\\az=cx\\bz-cy\end{cases}}\)

\(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Vậy ...

2 tháng 7 2016

Sửa đề thành vầy mới làm dc bạn\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)

\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)

\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)

\(-a^2x^2-b^2y^2-c^2z^2-2axby-2bycz-2axcz=0\)

\(\Rightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2axby-2bycz-2axcz=0\)

\(\Rightarrow a^2y^2-2axby+b^2x^2+a^2z^2-2axcz+c^2x^2+b^2z^2-2bycz+c^2y^2=0\)

\(\Rightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)


\(\Rightarrow ay-bx=0,az-cx=0,bz-cy=0\)

\(\Rightarrow ay=bx,az=cx,bz=cy\)

\(\Rightarrow\frac{a}{x}=\frac{b}{y},\frac{a}{x}=\frac{c}{z},\frac{b}{y}=\frac{c}{z}\)

\(\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\left(dpcm\right)\)

Chúc bạn học tốt . Chọn cho mình nha cảm ơn 

năm nay mình mới lên lớp 6

17 tháng 7 2017

Bài 1:

\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\)

\(\Leftrightarrow-a^2+2ab-b^2=0\)

\(\Leftrightarrow-\left(a^2-2ab+b^2\right)=0\Leftrightarrow-\left(a-b\right)^2\le0\)

Khi \(a=b\)

Bài 2:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)

Khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)