K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

BĐt phụ : \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)

c/m :\(3a^2-3ab+3b^2\ge a^2+ab+b^2\)

\(2a^2-4ab+2b^2\ge0\)

\(2\left(a-b\right)^2\ge0\)(luôn đúng)

Giải ;

ta có:\(\frac{a^3-b^3}{a^2+ab+b^2}+\frac{b^3-c^3}{b^2+bc+c^2}+\frac{c^3-a^3}{c^2+ac+a^2}=\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=0\)

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ac+a^2}\)(1)

\(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\Leftrightarrow\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\)

\(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\)

tương tự ta có:\(\frac{b^3+c^3}{b^2+bc+c^2}\ge\frac{1}{3}\left(b+c\right)\);\(\frac{c^3+a^3}{c^2+ca+a^2}\ge\frac{1}{3}\left(a+c\right)\)

cộng vế vs vế ta có:

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}+\frac{a^3}{c^2+ac+a^2}\ge\frac{2}{3}\left(a+b+c\right)\)

từ (1)→\(2\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\ge\frac{2}{3}\left(a+b+c\right)\)

\(S\ge\frac{1}{3}\left(a+b+c\right)=1\)(đặt S luôn cho tiện)

dấu = xảy ra khi BĐt ở đầu đúng :\(\begin{cases}a=b\\b=c\\c=a\end{cases}\)mà a+b+c=3↔a=b=c=1

 

9 tháng 7 2017

Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)

Cộng theo vế 3 BĐT trên rồi thu gọn

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)

Áp dụng tiếp BĐT AM-GM

\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)

Tương tự rồi cộng theo vế có ĐPCM

Bài 2:

Quy đồng  BĐT trên ta có:

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)

Bài 4: Áp dụng BĐT AM-GM 

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)

Tương tự rồi cộng theo vế

Bài 5: sai đề tự nhien có dấu - :v nghĩ là +

9 tháng 7 2017

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]

 
9 tháng 1 2018

Áp dụng BĐT cô-si, ta có \(a^3+b^3+c^3\ge3abc\Rightarrow\frac{a^3+b^3+c^3}{2abc}\ge\frac{3}{2}\)

Mà \(\frac{a^2+b^2}{c^2+ab}\ge\frac{a^2+b^2}{c^2+\frac{a^2+b^2}{2}}=2\frac{a^2+b^2}{2c^2+a^2+b^2}\)

tương tự thì \(P\ge\frac{3}{2}+2\left(\frac{a^2+b^2}{2c^2+a^2+b^2}+\frac{b^2+c^2}{2a^2+b^2+c^2}+\frac{c^2+a^2}{2b^2+a^2+c^2}\right)\)

Đặt \(\hept{\begin{cases}a^2+b^2=x\\b^2+c^2=y\\c^2+a^2=z\end{cases}}\)

ta có \(P\ge\frac{3}{2}+2\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=\frac{3}{2}+2\left(\frac{x^2}{xy+xz}+\frac{y^2}{yz+yx}+\frac{z^2}{zx+zy}\right)\)

=>\(P\ge\frac{3}{2}+2.\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\frac{3}{2}+2.\frac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}\ge\frac{3}{2}+3=\frac{9}{2}\)

dấu  xảy ra <>a=b=c>0 

Vậy ...

^_^

11 tháng 12 2017

bài này easy thôi:

Áp dụng BĐT schwarz ta có:

\(VT=\frac{a^4}{a\left(a^2+ab+b^2\right)}+\frac{b^4}{b\left(b^2+bc+c^2\right)}+\frac{c^4}{c\left(c^2+ac+a^2\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ac+a^2\right)}.\)

Mặt khác \(a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ac+a^2\right)\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right).\)

nên ta có:\(VT\ge\frac{a^2+b^2+c^2}{a+b+c}=a^2+b^2+c^2.\)

Mà ta có BĐT cơ bản là:\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2.\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge1\Leftrightarrow a^2+b^2+c^2\ge\frac{1}{3}.\)

Do đó:\(VT\ge a^2+b^2+c^2\ge\frac{1}{3}.\)

Vậy Min là \(\frac{1}{3}.\)Dấu = xảy ra khi \(a=b=c=\frac{1}{3}.\)

16 tháng 2 2020

Nhớ làm đâu đó rồi mà làm biếng lục vc:(

Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2;w^3\right)\). Ta đi chứng minh \(P\ge28\)

\(\Leftrightarrow\frac{v^2}{3u^2-2v^2}+\frac{27u^3}{w^3}\ge28\). Chú ý rằng: \(w^3\le uv^2\). Do đó ta chỉ cần chứng minh:

\(\Leftrightarrow\frac{v^2}{3u^2-2v^2}+\frac{27u^2}{v^2}\ge28\)\(\Leftrightarrow\frac{3\left(u^2-v^2\right)\left(27u^2-19v^2\right)}{v^2\left(3u^2-2v^2\right)}\ge0\)

Hiển nhiên đúng do \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow u^2\ge v^2\)...

P/s: Bài này dùng SOS đi cho lẹ:D

16 tháng 2 2020

Cách 2:

\(P-28=\frac{\left(a+b+c\right)^2\left[\Sigma_{cyc}a\left(b-c\right)^2\right]}{abc\left(ab+bc+ca\right)}+\frac{\left(\Sigma_{cyc}a^2-\Sigma_{cyc}ab\right)\left(9\Sigma_{cyc}a^2-\Sigma_{cyc}ab\right)}{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}\ge0\)

Vậy \(P\ge28\). Đẳng thức xảy ra khi \(a=b=c\)

15 tháng 1 2020

Bạn tham khảo tại đây:

Câu hỏi của Ngô Ngọc Anh - Toán lớp 9 - Học toán với OnlineMath

25 tháng 9 2019

Ta có: \(P=\Sigma\frac{\left(\frac{1}{c^2}\right)}{\left(\frac{1}{a}+\frac{1}{b}\right)}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}=\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{2}\ge\frac{\left(\frac{9}{a+b+c}\right)}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi a =b =c = 1.

True?

18 tháng 4 2020

Ta có : 

\(P=\frac{ab}{c^2\left(a+b\right)}+\frac{ac}{b^2\left(a+c\right)}+\frac{bc}{a^2\left(b+c\right)}\)

\(\Rightarrow P=\frac{\left(\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}}+\frac{\left(\frac{1}{b}\right)^2}{\frac{1}{c}+\frac{1}{a}}+\frac{\left(\frac{1}{a}\right)^2}{\frac{1}{c}+\frac{1}{b}}\)

\(\Rightarrow P\ge\frac{\left(\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}}\)

\(\Rightarrow P\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)

\(\Rightarrow P\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow P\ge\frac{1}{2}.\frac{9}{a+b+c}\)

\(\Rightarrow P\ge\frac{3}{2}\)

Dấu = xảy ra khi  a=b=c=1 

AH
Akai Haruma
Giáo viên
29 tháng 8 2019

Lời giải:

Áp dụng BĐT AM-GM:

\(ab\leq \frac{(a+b)^2}{4}; bc\leq \frac{(b+c)^2}{4}; ca\leq \frac{(c+a)^2}{4}\). Do đó:

\(\frac{ab}{c^2+3}+\frac{bc}{a^2+3}+\frac{ac}{b^2+3}\leq \frac{1}{4}\underbrace{\left(\frac{(a+b)^2}{c^2+3}+\frac{(b+c)^2}{a^2+3}+\frac{(c+a)^2}{b^2+3}\right)}_{M}(*)\)

Lại có, từ $a^2+b^2+c^2=3$ và áp dụng BĐT Cauchy-Schwarz suy ra:

\(M=\frac{(a+b)^2}{(a^2+c^2)+(b^2+c^2)}+\frac{(b+c)^2}{(a^2+b^2)+(a^2+c^2)}+\frac{(c+a)^2}{(b^2+a^2)+(b^2+c^2)}\)

\(\leq \frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}+\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}+\frac{c^2}{b^2+c^2}+\frac{a^2}{b^2+a^2}\)

\(\Leftrightarrow M\leq \frac{a^2+b^2}{a^2+b^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{c^2+a^2}{c^2+a^2}=3(**)\)

Từ \((*); (**)\Rightarrow \text{VT}\leq \frac{3}{4}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

30 tháng 8 2019

\(VT=\Sigma\frac{ab}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}\le\frac{1}{2}.\Sigma\frac{ab}{\sqrt{a^2+c^2}.\sqrt{b^2+c^2}}\le\frac{1}{4}\left(\Sigma\frac{a^2}{a^2+c^2}+\Sigma\frac{b^2}{b^2+c^2}\right)=\frac{3}{4}\)

(tắt tí ạ, ko chắc)

30 tháng 1 2019

Sửa lại đề là tìm Max nhé m.n

Ta có:

\(\frac{ab+bc+ca+6\left(a+b+c\right)+27}{\left(a+3\right)\left(b+3\right)\left(c+3\right)}=\frac{3}{5}\)

\(\Leftrightarrow\frac{\left(b+3\right)\left(c+3\right)+\left(c+3\right)\left(a+3\right)+\left(a+3\right)\left(b+3\right)}{\left(a+3\right)\left(b+3\right)\left(c+3\right)}=\frac{3}{5}\)

\(\Leftrightarrow\frac{5}{a+3}+\frac{5}{b+3}+\frac{5}{c+3}=3\Leftrightarrow\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}=0\)

Xét biểu thức:

\(\frac{a^2-4}{a^2-9}=\frac{\left(a-2\right)\left(a+2\right)}{\left(a-3\right)\left(a+3\right)}=\frac{a-2}{a+3}.\frac{a+2}{a-3}\)

tưởng tự:

\(\frac{b^2-4}{b^2-9}=\frac{b-2}{b+3}.\frac{b+2}{b-3},\frac{c^2-4}{c^2-9}=\frac{c-2}{c+3}.\frac{c+2}{c-3}\)

\(\Rightarrow\frac{a^2-4}{a^2-9}+\frac{b^2-4}{b^2-9}+\frac{c^2-4}{c^2-9}=\frac{a-2}{a+3}.\frac{a+2}{a-3}+\frac{b-2}{b+3}.\frac{b+2}{b-3}+\frac{c-2}{c+3}.\frac{c+2}{c-3}\)

Do vai trò của a và b và c như nhau nên ta giả sử

\(a\ge b\ge c\)

Khi đó ta có:

\(\frac{a-2}{a+3}\ge\frac{b-2}{b+3}\ge\frac{c-2}{c+3},\frac{a+2}{a-3}\le\frac{b+2}{b-3}\le\frac{c+2}{c-3}\)

Áp dụng bất đẳng thức chebyshev cho 2 bộ ngược chiều trên ta có
\(\frac{a-2}{a+3}.\frac{a+3}{a-2}+\frac{b-2}{b+3}.\frac{b+2}{b-3}+\frac{c-2}{c+3}.\frac{c+2}{c-3}\le\left(\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}\right).\left(\frac{a+2}{a-3}+\frac{b+2}{b-3}+\frac{c+2}{c-3}\right)\)

Mà \(\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}=0\)

\(\Rightarrow\frac{a^2-4}{a^2-9}+\frac{b^2-4}{b^2-9}+\frac{c^2-4}{c^2-9}\le0\)

\(\Rightarrow\frac{5}{a^2-9}+\frac{5}{b^2-9}+\frac{5}{c^2-9}\le-3\Rightarrow\frac{1}{a^2-9}+\frac{1}{b^2-9}+\frac{1}{c^2-9}\le\frac{-3}{5}\)

Dấu bằng xảy ra khi a=b=c=2

30 tháng 1 2019

Tìm max nha mấy god, e bị nhầm sory