Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{b^3k^3+b^3}{d^3k^3+d^3}=\dfrac{b^3}{d^3}\)
\(\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}=\dfrac{\left(bk+b\right)^3}{\left(dk+d\right)^3}=\dfrac{b^3}{d^3}\)
Do đó: \(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}\)
a) Theo bđt cauchy ta có:
\(a^3+b^3+b^3\ge3\sqrt[3]{a^3.b^6}=3ab^2\)
\(a^3+a^3+b^3\ge3a^2b\)
công vế theo vế ta có \(3\left(a^3+b^3\right)\ge3ab^2+3a^2b\)
\(\Leftrightarrow a^3+b^3+3\left(a^3+b^3\right)\ge a^3+3a^2b+3ab^2+b^3\)
\(\Leftrightarrow4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)
suy ra đpcm
ta luôn có \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2+a^2+b^2\ge a^2+2ab+b^2\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow\dfrac{2\left(a^2+b^2\right)}{4}\ge\dfrac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow\dfrac{\left(a^2+b^2\right)}{2}\ge\dfrac{\left(a+b\right)^2}{2^2}=\left(\dfrac{a+b}{2}\right)^2\)
suy ra đpcm
Xét: a>b
=>a-b>0
=>|a-b|=a-b
=>a-b<1
=>a<b+1
=>a/b<b+1/b
=>a/b<1+1/b
Vì:b>1
=>1/b<1
=>a/b<1+1
=>a/b<2
Mà: a>b
=>b/a<1
=>a/b+b/a<1+2
=>a/b+b/a<3
Ngược lại với b>a
Xét:a=b
=>a/b+b/a=2
=>a/b+b/a<3
Chắc giờ bạn làm đc rồi nhỉ
D = \(\left(y^2+2\right)\left(y-4\right)-\left(2y^2+1\right)\left(\dfrac{1}{2}y-2\right)\)
D = \(y^3-4y^2+2y-8-\left(y^3-4y^2+\dfrac{1}{2}y-2\right)\)
D = \(y^3-4y^2+2y-8-y^3+4y^2-\dfrac{1}{2}y+2\)
D = \(\dfrac{3}{2}y-6\) = \(\dfrac{3}{2}.\dfrac{-2}{3}-6\) = \(\dfrac{-6}{6}-6\) = \(-1-6=-7\)
a: \(\Leftrightarrow-\dfrac{23}{5}\cdot\dfrac{50}{23}< x< \dfrac{-13}{5}:\dfrac{21}{15}=\dfrac{-13}{5}\cdot\dfrac{5}{7}=\dfrac{-13}{7}\)
=>-10<x<-13/7
hay \(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2\right\}\)
b: \(\Leftrightarrow-\dfrac{13}{3}\cdot\dfrac{1}{3}< x< \dfrac{-2}{3}\cdot\dfrac{4-3-9}{12}\)
\(\Leftrightarrow-\dfrac{13}{9}< x< \dfrac{4}{9}\)
mà x là số nguyên
nên \(x\in\left\{-1;0\right\}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((a^4+b^4)(a^2+b^2)\geq (a^3+b^3)^2\)
\(\Rightarrow \frac{a^4+b^4}{ab(a^3+b^3)}\geq \frac{(a^3+b^3)^2}{ab(a^3+b^3)(a^2+b^2)}=\frac{a^3+b^3}{ab(a^2+b^2)}(1)\)
Tiếp tục áp dụng BĐT Bunhiacopxky:
\((a^3+b^3)(a+b)\geq (a^2+b^2)^2\)
Mà theo hệ quả BĐT AM-GM: \(a^2+b^2\geq \frac{(a+b)^2}{2}\)
Suy ra \((a^3+b^3)(a+b)\geq (a^2+b^2)\frac{(a+b)^2}{2}\)
\(\Leftrightarrow a^3+b^3\geq \frac{(a+b)(a^2+b^2)}{2}(2)\)
Từ (1); (2) suy ra \(\frac{a^4+b^4}{ab(a^3+b^3)}\geq \frac{a^3+b^3}{ab(a^2+b^2)}\geq \frac{a+b}{2ab}\)
Tương tự với các phân thức còn lại và cộng theo vế thu được:
\(\sum \frac{a^4+b^4}{ab(a^3+b^3)}\geq \frac{a+b}{2ab}+\frac{b+c}{2bc}+\frac{a+c}{2ac}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Ta có đpcm
Dấu bằng xảy ra khi \(a=b=c\)
E cảm ơn nhiều ạ. Mong thầy cô giúp đỡ e thêm. E yếu phần bđt ạ