K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hình bạn tự vẽ nhá

Xét \(\Delta\)ABC có ( A = 90o )

=> \(BC=\sqrt{AB^2+AC^2}=5\)

\(\sin B=\frac{AC}{BC}=\frac{4}{5}\)

\(\cos B=\frac{AB}{BC}=\frac{3}{5}\)

\(\tan B=\frac{AC}{AB}=\frac{4}{3}\)

\(\cot B=\frac{AB}{AC}=\frac{3}{4}\)

Góc C bạn cũng làm tương tự nha 

Study well 

2 tháng 8 2021

pytago=>\(BC=\sqrt{AB^2+AC^2}=10cm\)

\(=>\sin B=\dfrac{AC}{BC}=\dfrac{8}{10}=0,8=\cos C\)

\(=>\cos B=\dfrac{AB}{BC}=\dfrac{6}{10}=0,6=\sin C\)

\(=>\tan B=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}=\cot B\)

\(=>\cot B=\dfrac{AB}{AC}=\dfrac{3}{4}=\tan C\)

NV
2 tháng 8 2021

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

\(\Rightarrow sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)

\(cosB=\dfrac{AB}{BC}=\dfrac{3}{5}\)

\(tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\)

\(cotB=\dfrac{AB}{AC}=\dfrac{3}{4}\)

Do tam giác ABC vuông tại A \(\Rightarrow C=90^0-B\)

\(\Rightarrow sinC=sin\left(90^0-B\right)=cosB=\dfrac{3}{5}\)

\(cosC=cos\left(90^0-B\right)=sinB=\dfrac{4}{5}\)

\(tanC=tan\left(90^0-B\right)=cotB=\dfrac{3}{4}\)

6 tháng 10 2023

Bài 1:

a) Ta có:

\(tanB=\dfrac{AC}{AB}\Rightarrow\dfrac{AC}{AB}=\dfrac{5}{2}\)

\(\Rightarrow AC=\dfrac{AB\cdot5}{2}=\dfrac{6\cdot5}{2}=15\)  

b) Áp dụng Py-ta-go ta có: 

\(BC^2=AB^2+AC^2=6^2+15^2=261\)

\(\Rightarrow BC=\sqrt{261}=3\sqrt{29}\)

6 tháng 10 2023

Bài 2: 

\(\left\{{}\begin{matrix}sinM=sin40^o\approx0,64\Rightarrow cosN\approx0,64\\cosM=cos40^o\approx0,77\Rightarrow sinN\approx0,77\\tanM=tan40^o\approx0,84\Rightarrow cotN\approx0,84\\cotM=cot40^o\approx1,19\Rightarrow tanN\approx1,19\end{matrix}\right.\)

12 tháng 10 2021

a: \(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}\)

\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}\)

\(\tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}\)

\(\cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}\)

8 tháng 10 2021

\(a,\sin\widehat{C}=\dfrac{AB}{BC};\cos\widehat{C}=\dfrac{AC}{BC};\tan\widehat{C}=\dfrac{AB}{AC};\cot\widehat{C}=\dfrac{AC}{AB}\\ b,BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\left(pytago\right)\\ \Rightarrow\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{13};\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{5}{13}\\ \tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{12}{5};\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{5}{12}\)

\(\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{12}{5}\approx\tan67^022'\\ \Rightarrow\widehat{B}\approx67^022'\\ \Rightarrow\widehat{C}=90^0-67^022'=22^038'\)

 

Bài 2: 

\(\sin65^0=\cos25^0\)

\(\cos70^0=\sin20^0\)

\(\tan80^0=\cot10^0\)

\(\cot68^0=\tan22^0\)

Bài 1: 

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=1.8^2+2.4^2=3^2\)

hay BC=3cm

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{2.4}{3}=\dfrac{4}{5}\)

\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{1.8}{3}=\dfrac{3}{5}\)

\(\tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{2.4}{1.8}=\dfrac{4}{3}\)

\(\cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{1.8}{2.4}=\dfrac{3}{4}\)

28 tháng 7 2018

ai giúp mik vs : cảm ơn mn nhé >3

29 tháng 7 2018

ai giúp mik đi huhu