Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề 1
Bài 1
a) \(A=\left\{37;38;39;...;91;92\right\}\)
b) \(B=\left\{0;1;2;3;4;5...\right\}\)
Bài 2
a) 210 + 47.84 + 16.47
= 210 + 47.(84 + 16)
= 210 + 47.100
= 210 + 4700
= 4910
b) 53.37 + 53.64 - 57:54
= 53.37 +5 3.64 +5 3
= 53.(37 + 64 - 1)
= 53.100
= 125.100
= 12 500
c) (335 + 334 - 333) : 332
= 335:332 + 334:332 - 333:332
= 33 + 32 - 3
= 27 + 9 - 3
= 33
d) 13 + 16 + 19 + ... + 79 + 82 + 85
25 số hạng
=> Tổng = (85 + 13) x 25:2 = 1225
Bài 3
a) 271 + (x - 86) = 368
x - 86 = 368 - 271
x - 86 = 97
x = 86 + 97
x = 183
b) 2.3x + 4.52= = 154
2.3x+ 100 = 154
2.3x = 154 - 100
2.3x = 54
3x = 54:2
3x = 27
3x = 33
=> x = 3
c) 24x - 3 + 74 = 106
24x - 3 = 106 - 74
24x - 3 = 32
24x - 3 = 25
=> 4x - 3 = 5
4x = 5 + 3
4x = 8
x = 8:4
x = 2
Đề 2
Bài 1
a) \(18.74+18.22+18.4\)
\(=18.\left(74+22+4\right)\)
\(=18.100\)
\(=1800\)
b) \(2016^0+4^4:4^2-5.2\)
\(=1+4^2-10\)
\(=17-10\)
\(=7\)
c) \(40:\left[11+\left(5-2\right)^2\right]\)
\(=40:\left[11+3^2\right]\)
\(=40:\left[11+9\right]\)
\(=40:20\)
\(=2\)
Bài 2
a) \(5.\left(x-13\right)=20\)
\(x-13=20:5\)
\(x-13=4\)
\(x=4+13\)
\(x=17\)
b) \(26-3.\left(x+4\right)=5\)
\(3.\left(x+4\right)=26-5\)
\(3.\left(x+4\right)=21\)
\(x+4=21:3\)
\(x+4=7\)
\(x=7-4\)
\(x=3\)
c) \(12.x-5^4:5^2=35\)
\(12.x-25=35\)
\(12.x=35+25\)
\(12.x=60\)
\(x=60:12\)
\(x=5\)
Bài 3
từ trang 1 đến trang 9 cần số chữ số là : (9-1)+1 *1=9 (chữ số)
từ trang 10 đến trang 99 cần số chữ số là : (99-10)+1 *2 =180 (chữ số)
từ trang 100 đến trang 164 cần số chữ số là : (164-100)+1*3=195 (chữ số)
cân tất cả số chữ số để đánh số trang quyển sách dày 164 trang la : 9+180+195=384 (chữ số)
Đ/S:384 chữ số
Bài 4: 2 + 4 + 6 + ... + 50
Dãy trên có số số hạng là
\(\left(50-2\right):2+1=15\)(số hạng)
Dãy trên nhận giá trị
\(\left(50+2\right)\times15:2=390\)
xem ai thông minh, tinh mắt nhất có thể luận ra toàn bộ đề và giúp mk giải nào!!
Trả lời:
\(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right)\left(5x+6\right)}=\frac{2005}{2006}\)
\(\Rightarrow1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2005}{2006}\)
\(\Rightarrow1-\frac{1}{5x+6}=\frac{2005}{2006}\)
\(\Rightarrow\frac{1}{5x+6}=1-\frac{2005}{2006}\)
\(\Rightarrow\frac{1}{5x+6}=\frac{1}{2006}\)
\(\Rightarrow5x+6=2006\)
\(\Rightarrow5x=2000\)
\(\Rightarrow x=400\)
Vậy x = 400
Trả lời:
\(\frac{x}{2008}-\frac{1}{10}-\frac{1}{15}-\frac{1}{21}-...-\frac{1}{120}=\frac{5}{8}\)
\(\Rightarrow\frac{x}{2008}-\left(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\right)=\frac{5}{8}\)\(\frac{5}{8}\)
Đặt \(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\), ta được : \(\frac{x}{2008}-A=\frac{5}{8}\) (*)
\(\Rightarrow A=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(\Rightarrow A=2\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)
\(\Rightarrow A=2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(\Rightarrow A=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(\Rightarrow A=2\left(\frac{1}{4}-\frac{1}{16}\right)=2.\frac{3}{16}=\frac{3}{8}\)
Thay A vào (*) , ta có:
\(\frac{x}{2008}-\frac{3}{8}=\frac{5}{8}\)
\(\Rightarrow\frac{x}{2008}=1\)
\(\Rightarrow x=2008\)
Vậy x = 2008
B5
a)\(A=\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)\cdot...\cdot\left(1-\dfrac{2010}{2010}\right)\left(1-\dfrac{2011}{2010}\right)\\ =\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)\cdot...\cdot\left(1-1\right)\left(1-\dfrac{2011}{2010}\right)\\ =\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)\cdot...\cdot0\cdot\left(1-\dfrac{2011}{2010}\right)\\ =0\)
b)
\(A=\dfrac{1946}{1986}=\dfrac{1986-40}{1986}=\dfrac{1986}{1986}-\dfrac{40}{1986}=1-\dfrac{40}{1986}\\ B=\dfrac{1968}{2008}=\dfrac{2008-40}{2008}=\dfrac{2008}{2008}-\dfrac{40}{2008}=1-\dfrac{40}{2008}\)
Vì \(\dfrac{40}{1986}>\dfrac{40}{2008}\) nên \(1-\dfrac{40}{1986}< 1-\dfrac{40}{2008}\) hay \(A< B\)
B6
a) Đề sai
Sửa lại:
\(B=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{28\cdot31}\\ =\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{28}-\dfrac{1}{31}\\ =1-\dfrac{1}{31}\\ =\dfrac{30}{31}\)
b)
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)
Ta thấy:
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=\dfrac{1}{1}-\dfrac{1}{2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3\cdot4}=\dfrac{1}{3}-\dfrac{1}{4}\)
...
\(\dfrac{1}{8^2}< \dfrac{1}{7\cdot8}=\dfrac{1}{7}-\dfrac{1}{8}\)
\(\Rightarrow B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\\ B< 1-\dfrac{1}{8}\\ B< \dfrac{7}{8}\left(1\right)\)
Mà \(\dfrac{7}{8}< 1\left(2\right)\)
Từ (1) và (2) ta có \(B< 1\)
Ta có:
\(\overline{abc}=100.a+10.b+c=n^2-1\) (1)
\(\overline{cba}=100.c+b.10+a=n^2-4n+4\) (2)
Lấy (1) trừ (2) ta được:
\(99\left(a-c\right)=4n-5\)
\(\Rightarrow4n-5⋮99\)
Vì \(100\le\overline{abc}\le999\) nên:
\(100\le n^2-1\le999\)
\(\Rightarrow101\le n^2\le1000\)
\(\Rightarrow11\le31\Rightarrow39\le4n-5\le119\)
Vì \(4n-5⋮99\Rightarrow4n-5=99\Rightarrow n=26\Rightarrow\overline{abc}=675\)
Vậy \(\overline{abc}=675\)
a) Vì tia Ot nằm giữa 2 tia Ox và Oy
\(\Rightarrow\) \(\widehat{xOt}+\widehat{yOt}=\widehat{xOy}\)
\(\Rightarrow\) 30o + 70o = \(\widehat{xOy}\)
\(\Rightarrow\) \(\widehat{xOy}\) = 100o
Vậy \(\widehat{xOy}\) = 100o
b) Vì tia Ot nằm giữa 2 tia Ox và Oy
\(\Rightarrow\) \(\widehat{xOt}+\widehat{yOt}=\widehat{xOy}\)
\(\Rightarrow\) \(\dfrac{1}{3}\widehat{yOt}+\widehat{yOt}=108^o\)
\(\Rightarrow\) \(\widehat{yOt}\left(\dfrac{1}{3}+1\right)\) = 108o
\(\Rightarrow\) \(\widehat{yOt}\dfrac{1}{4}\) = 108o
\(\Rightarrow\) \(\widehat{yOt}\)= 108o : \(\dfrac{4}{3}\) = 81o
\(\Rightarrow\) \(\widehat{xOt}\)= 81o : 3 = 27o
Vậy \(\widehat{yOt}\) = 81o và \(\widehat{xOt}\) = 27o
c) Vì tia Ot nằm giữa 2 tia Ox và Oy
\(\Rightarrow\) \(\widehat{yOt}+\widehat{xOt}=\widehat{xOy}\)
\(\Rightarrow\) \(\widehat{yOt}+\widehat{xOt}=80^o\)(1)
Theo bài ra, ta có: \(\widehat{yOt}-\widehat{xOt}=20^o\) (2)
Từ (1) và (2) suy ra:
\(\widehat{xOt}\) = (80o - 20o) : 2 = 30o
\(\Rightarrow\) \(\widehat{yOt}\) = 80o - 30o = 50o
Vậy \(\widehat{xOt}\) = 30o và \(\widehat{yOt}\) = 50o
c) Vì tia Ot nằm giưa 2 tia Ox và Oy
\(\Rightarrow\) \(\widehat{xOt}+\widehat{yOt}=\widehat{xOy}\)
\(\Rightarrow\) 50o + \(\widehat{yOt}\) = 100o
\(\Rightarrow\) \(\widehat{yOt}\) = 100o - 50o = 50o
Vậy \(\widehat{yOt}\) = 50o
d) Vì tia Ot nằm giữa 2 tia Ox và Oy
\(\Rightarrow\) \(\widehat{xOt}+\widehat{yOt}=\widehat{xOy}\)
\(\Rightarrow\) ao + bo = \(\widehat{xOy}\)
Vậy \(\widehat{xOy}\)= ao + bo (với 0 \(\le\) a,b \(\le\) 180)