K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 3 2023

1. Đ

2. Sai (câu này D mới đúng, C chỉ đúng khi thêm điều kiện a khác 0)

3. A

4. D

5. Sai, B đúng

6. Đ

7. Đ

8. S, đáp án đúng là A

9. S, đáp án đúng là C 

10. Đ

11. Đ

12. Đ

13. S, đáp án đúng là A

14. Đ

15. Đ

16. A

17. A đúng (câu này bản thân đề bài ko rõ ràng, lẽ ra phải ghi là "phương trình bậc nhất một ẩn có thể có bao nhiêu nghiệm")

18. C mới là đáp án đúng

11 tháng 3 2023

Dạ em cảm ơn nhìu ạ 

NV
10 tháng 3 2023

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow xyz=1\) và \(x;y;z>0\)

Gọi biểu thức cần tìm GTNN là P, ta có:

\(P=\dfrac{1}{\dfrac{1}{x^3}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)}+\dfrac{1}{\dfrac{1}{y^3}\left(\dfrac{1}{z}+\dfrac{1}{x}\right)}+\dfrac{1}{\dfrac{1}{z^3}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)}\)

\(=\dfrac{x^3yz}{y+z}+\dfrac{y^3zx}{z+x}+\dfrac{z^3xy}{x+y}=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)

\(P\ge\dfrac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)

\(P_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)

2 tháng 2 2024

Ta có: DE//AC (cùng vuông góc với AB) 

Áp dụng định lý Ta-lét ta có:

\(\dfrac{BD}{AD}=\dfrac{BE}{CE}\Rightarrow\dfrac{BD}{AD}=\dfrac{BE}{BC-BE}\Rightarrow\dfrac{6}{x}=\dfrac{3x}{13,5-3x}\)

\(\Leftrightarrow6\left(13,5-3x\right)=x\cdot3x\)

\(\Leftrightarrow81-18x=3x^2\)

\(\Leftrightarrow27-6x=x^2\)

\(\Leftrightarrow x^2+6x-27=0\)

\(\Leftrightarrow x^2-3x+9x-27=0\)

\(\Leftrightarrow x\left(x-3\right)+9\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-9\left(ktm\right)\end{matrix}\right.\)

Vậy: `x=3` 

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

\({x^2} = {4^2} + {2^2} = 20 \Rightarrow x = 2\sqrt 5 \)

\({y^2} = {5^2} - {4^2} = 9 \Leftrightarrow y = 3\)

\({z^2} = {\left( {\sqrt 5 } \right)^2} + {\left( {2\sqrt 5 } \right)^2} = 25 \Rightarrow z = 5\)

\({t^2} = {1^2} + {2^2} = 5 \Rightarrow t = \sqrt 5 \)

13 tháng 1 2024

Hai hình đồng dạng em nhé!

25 tháng 10 2021

ai giải giúp em đi ạ em đang cần gấp lắm ạ 

a: Xét tứ giác DIHK có

góc DIH=góc DKH=góc KDI=90 độ

nên DIHK là hình chữ nhật

b: Xét tứ giác IHAK có

IH//AK

IH=AK

Do đó: IHAK là hình bình hành

=>B là trung điểm chung của IA và HK

Xét ΔIKA có IC/IK=IB/IA

nên BC//KA

Xét ΔIDA có IB/IA=IM/ID

nên BM//DA

=>B,C,M thẳng hàng

23 tháng 1 2024

a) Áp dụng định lý Py-ta-go cho tam giác ABC vuông tại A ta có:

\(BC^2=AB^2+AC^2\) 

\(\Rightarrow BC=\sqrt{AB^2+AC^2}\)

\(\Rightarrow BC=\sqrt{10^2+20^2}=10\sqrt{5}\left(cm\right)\) 

Áp dụng định lý Py-ta-go cho tam giác ABM vuông tại A ta có:

\(BM^2=AB^2+AM^2\)

\(\Rightarrow BM=\sqrt{AB^2+AM^2}\)

\(\Rightarrow BM=\sqrt{10^2+5^2}=5\sqrt{5}\left(cm\right)\)

b) Ta có: 

\(\dfrac{AM}{AB}=\dfrac{1}{2}\)

\(\dfrac{BM}{BC}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{AM}{AB}=\dfrac{MB}{BC}=\dfrac{1}{2}\) 

Xét hai tam giác ABC và AMB có: 

\(\widehat{BAC}\) chung 

\(\dfrac{AM}{AB}=\dfrac{MB}{BC}=\dfrac{1}{2}\)

\(\Rightarrow\Delta ABC\sim\Delta AMB\left(c.g.c\right)\)

23 tháng 1 2024

a) Xét hai tam giác ABE và ACD có:

\(\widehat{ACD}=\widehat{ABE}\left(gt\right)\)     

\(\widehat{BAC}\) chung 

\(\Rightarrow\Delta ABE\sim\Delta ACD\left(g.g\right)\) 

b) Ta có: \(\Delta ABE\sim\Delta ACD\left(cmt\right)\)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AD}\)