Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x\left(x-3\right)-x+3=0\)
<=> \(2x\left(x-3\right)-\left(x-3\right)=0\)
<=> \(\left(x-3\right)\left(2x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}\)
Vậy...
bài 2
P= (x+1)(x2-x+1)+x-(x-1)(x2+x+1)+2010 với x = -2010
= (x3+1) + x - (x3-1) + 2010
= x3 + 1 + x - x3 + 1 + 2010
= x + 2 + 2010
= 2010 + 2 + 2010
=4022
Q=16x(4x2-5)-(4x+1)(16x2-4x + 1) với x = 1/5
= (4x)3-16.5x - [(4x)3+1]
= (4x)3 - 16.5x - (4x)3 - 1
= -16.5x - 1
= -16.5.1/5 - 1
= -16-1
=-17
a) (x-3)(x2+3x+9)-x(x-4)(x+4)=41
<=> x3 - 33 - x(x2 - 42) = 41
<=> x3 - 27 - x3 + 16x = 41
<=> 16x = 68
<=> x= 4,25
b) (x+2)(x2-2x+4)-x(x2+2)=4
<=> x3 + 23 - x3 - 2x =4
<=> 8 - 2x = 4
<=> 2x = 4
<=> x= 1/2
Theo bài ra , ta có :
\(\left(x-1\right)x\left(x+1\right)\left(x+2\right)=24\)
\(\Leftrightarrow x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
Đặt x2 + x = z =) x2 + x - 2 = z - 2
\(\Rightarrow z\left(z-2\right)=24\)
\(\Leftrightarrow z^2-2z=24\)
\(\Leftrightarrow z^2-2z-24=0\)
\(\Leftrightarrow\left(z+4\right)\left(z-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}z=-4\\z=6\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x^2+x=-4\\x^2+x=6\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x^2+x+4=0\\x^2+x-6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=-3\end{cases}}\)
Vậy S = { -1/2 ; -3 }
b)
\(x^4+3x^3+4x^2+3x+1=0\)
\(\Leftrightarrow x^4+x^3+2x^3+2x^2+2x^2+2x+x+1=0\)
\(\Leftrightarrow x^3\left(x+1\right)+2x^2\left(x+1\right)+2x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+2x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+x^2+x^2+x+x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1\left(x^2+x+1\right)\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x^2+x+1\right)=0\)(1)
Ta có :
\(x^2+x+1\)
\(\Leftrightarrow x^2+2\times\frac{1}{2}x+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\in Z\)(2)
Từ (1) và (2) suy ra phương trình có dạng
\(\left(x+1\right)^2=0\)( Vì phương trình (2) luôn lớn hơn 0 )
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy S = {-1}
Chúc bạn học tốt =))
\(\left(-3x-2\right)^2+\left(3x+5\right)\left(5-3x\right)=-7\)
\(\Leftrightarrow9x^2+12x+4+15x-9x^2+25-15x=-7\)
\(\Leftrightarrow12x+36=0\Leftrightarrow x=-3\)
\(\left(x+2\right)\left(x^2+2x+2\right)-x\left(x-8\right)^2=\left(4x-3\right)\left(4x+3\right)\)
\(\Leftrightarrow x^3+2x^2+2x+2x^2+4x+4-x\left(x^2-16x+64\right)=16x^2-9\)
\(\Leftrightarrow x^3+4x^2+6x+4-x^3+16x^2-64=16x^2-9\)
\(\Leftrightarrow4x^2+6x-51=0\)
\(\cdot\Delta=6^2-4.4.\left(-51\right)=852\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-6+\sqrt{852}}{8}\);\(x_2=\frac{-6-\sqrt{852}}{8}\)
Bài 1:
Theo bài ra ta có:
\(\left(x-y\right)^2=x^2-2xy+y^2\)
\(=\left(5-y\right)^2-2\times2+\left(5-x\right)^2\)
\(=5^2-2\times5y+y^2-4+5^2-2\times5x+x^2\)
\(=25-10y+y^2+25-10x+x^2-4\)
\(=\left(25+25\right)-\left(10x+10y\right)+x^2+y^2-4\)
\(=50-10\left(x+y\right)+x^2+2xy+y^2-2xy-4\)
\(=50-10\times5+\left(x+y\right)^2-2\times2-4\)
\(=50-50+5^2-4-4\)
\(=25-8=17\)
Vậy giá trị của \(\left(x-y\right)^2\)là 17
có khó j đâu mà rên rỉ, bất cứ hs trung bình nào cũng làm dc,giống như chia chia 1 số co 5 chu so cho 1 sô co 3 chu sô thui mà
11) = 2x - x +17 dư 76x +48
tự làm tip cho quen
câu 2 : (x-3)(x-1)(x+1)(x+3)+15
=(x^2-9)(x^2-1)+15
đặt y=x^2-5 ta có
(y-4)(y+4)+15=y^2-16+15=y^2-1=(y+1)(y-1)=(x^2-6)(x^2-4)=(x^2-6)(x-2)(x+2)