Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>mx=1-2y và 3x+(m+1)y=-1
=>x=-2/m*y+1/m và 3*(y*-2/m+1/m)+(m+1)y=-1
=>\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-2}{m}\cdot y+\dfrac{1}{m}\\-\dfrac{6}{m}y+\dfrac{3}{m}+\left(m+1\right)y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\left(-\dfrac{6}{m}+m+1\right)+=-1-\dfrac{3}{m}\\x=-\dfrac{2}{m}\cdot y+\dfrac{1}{m}\end{matrix}\right.\)
=>\(\Leftrightarrow\left\{{}\begin{matrix}y\cdot\dfrac{m^2+m-6}{m}=\dfrac{-m-3}{m}\\x=-\dfrac{2}{m}\cdot y+\dfrac{1}{m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\cdot\dfrac{\left(m+3\right)\left(m-2\right)}{m}=\dfrac{-\left(m+3\right)}{m}\\x=-\dfrac{2}{m}\cdot y+\dfrac{1}{m}\end{matrix}\right.\)
b: Nếu m=0 thì hệ vô nghiệm
Nếu m=-3 thì hệ có vô số nghiệm
Nếu m=2 thì hệ vô nghiệm
nếu m<>0; m<>-3; m<>2 thì hệ có nghiệm duy nhất là
\(\left\{{}\begin{matrix}y=\dfrac{-\left(m+3\right)}{m}:\dfrac{\left(m+3\right)\left(m-2\right)}{m}=-\dfrac{1}{m-2}\\x=\dfrac{2}{m}\cdot\dfrac{1}{m-2}+\dfrac{1}{m}=\dfrac{2+m-2}{m\left(m-2\right)}=\dfrac{m}{m\left(m-2\right)}=\dfrac{1}{m-2}\end{matrix}\right.\)
a) Thay m = 1 vào hệ ta được hê phương trình:
-2x + y = 5
x + 3y = 1
=> -2x+ y = 5
2x + 6y = 2
Cộng từng vế của pt ta được:
7y = 7 => y = 1 => x = -2
Vậy (x;y) = (-2;1)
b) Từ PT thứ nhất trong hệ => y = 2mx + 5. Thế vapf PT thứ hai ta được: mx + 3. (2mx +5) = 1
<=> 7mx = -14 <=> mx = -2 (*)
+) Nếu m \(\ne\) 0 <=> (*) có nghiệm là x = -2/m => y = 1
Khi đó, hệ có nghiệm là (-2/m; 1)
+) Nếu m = 0 thì (*) <=> 0 = -2 Vô lí => (*) vô nghiệm <=> Hệ vô nghiệm
Vậy.................
c) Với m \(\ne\) 0 thì hệ có nghiệm x = -2/m và y = 1
Để x - y = 2 <=>( -2/m )- 1 = 2 <=> (-2/m) = 3 <=> m = -2/3 ( Thỏa mãn)
Vậy...................