K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2018

Ta có thiết diện mặt cắt qua trục của chiếc ăng-ten là:

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Vậy ta có: A(2; 1/2) mà A ∈ prapol:

Giải sách bài tập Toán 10 | Giải sbt Toán 10

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Từ giả thiết ta có tiêu điểm \(F(5;0)\), suy ra \(\frac{p}{2} = 5\) hay \(p=10\).

Vậy phương trình chính tắc của parabol là: \({y^2} = 20x\)

Chiều sâu của gương là 45 cm tương ứng với \({x_A} = 45\), thay \({x_A} = 45\) vào phương trình \({y^2} = 20x\) ta có: \({y^2} = 20.45 = 900 \Rightarrow {y_A} = 30 \Rightarrow AB = 2{y_A} = 60 \)

Vậy khoảng cách AB là \(60 cm\)

10 tháng 4 2017

Pra bol đối xứng qua trục Tung => điểm cao nhất thuộc Parabol có tọa độ (2,h)

\(x=2\Rightarrow y=\dfrac{1}{2}\Rightarrow a.2^2=\dfrac{1}{2}\Rightarrow a=\dfrac{1}{8}\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Gọi phương trình chính tắc của parabol là: \({y^2} = 2px\left( {p > 0} \right)\)

Vì \(AB = 40cm\) và \(h = 30cm\) nên \(A\left( {30;20} \right)\)

Do \(A\left( {30;20} \right)\) thuộc parabol nên ta có: \({20^2} = 2p.30 \Rightarrow p = \frac{{20}}{3}\)

Vậy parabol có phương trình chính tắc là: \({y^2} = \frac{{40}}{3}x\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Phương trình chính tắc của parabol (P) có dạng \({y^2} = 2px\left( {p > 0} \right)\).

a) Khi 1 đơn vị đo trong mặt phẳng  tọa độ ứng với  1m trên thực tế, ta có \(B\left( {20;200} \right)\).

Thay tọa độ điểm B vào phương trình của (P) ta được \({200^2} = 2p.20 \Leftrightarrow p = 1000\).

Vậy phương trình chính tắc của (P) là: \({y^2} = 2000x\).

b) Khi 1 đơn vị đo trong mặt phẳng tọa độ ứng với 1km trên thực tế, ta có  \(B\left( {0,02;0,2} \right)\).

Tương tự, ta có phương trình chính tắc của (P) là \({y^2} = 2x\).

12 tháng 6 2018

Đáp án D

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Gắn hệ trục Oxy vào chiếc cổng, gọi chiều cao của cổng là ta vẽ lại parabol như dưới đây:

Phương trình parabol mô phỏng cổng có dạng \({y^2} = 2px\)

Theo giả thiết \(AB = 2{y_A} = 192 \Rightarrow {y_A} = 96,OC = h \Rightarrow M\left( {h - 2;95,5} \right),A\left( {h;96} \right)\)

Thay tọa độ các điểm \(M\left( {h - 2;95,5} \right),A\left( {h;96} \right)\) vào phương trình \({y^2} = 2px\) ta có:

\(\left\{ \begin{array}{l}95,{5^2} = 2p\left( {h - 2} \right)\\{96^2} = 2ph\end{array} \right. \Rightarrow \left\{ \begin{array}{l}p = \frac{{383}}{{16}}\\h \simeq 192,5\end{array} \right.\)

Vậy chiều cao của cổng gần bằng 192,5 m