Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài và chiều rộng lầ lượt là x và y (x>y; x,y <59)
Chu vi là 118m nên ta có PT: x+y=59 (1)
Nếu giảm chiều dài đi 5m và tăng chiều rộng thêm 3m thì diện tích giảm đi 14m2 nên ta có PT:
xy-(x-5)(y+3)=14
⇔xy-xy-3x+5y+15=14
⇔-3x+5y=-1 (2)
Từ (1) và (2) có HPT: \(\left\{{}\begin{matrix}x+y=59\\-3x+5y=-1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=37\\y=22\end{matrix}\right.\)(TM)
Vậy...
Nửa chu vi mảnh vườn HCN: 118:2=59(m)
Gọi a là độ dài chiều dài mảnh vườn. (0<a<59) (m)
=> Độ dài chiều rộng mảnh vườn: 59-a (m)
=> Diện tích thực tế mảnh vườn: (59-a).a (m2) (1)
* Giả sử tăng chiều rộng thêm 3m và giảm chiều dài đi 5m ,diện tích mảnh vườn lúc đó bằng: (a-5).(59-a+3)=(a-5).(62-a) (m2)
* Vì diện tích giả sử lớn hơn diện tích thực tế 14m2. Nên ta có phương trình:
(59-a).a=[(a-5).(62-a)] +14
<=> -a2 + 59a +a2 -67a = -296
<=> -8a= -296
<=>a=37 (TM)
-> Chiều dài mảnh vườn là 37(m), rộng là 59-37=22(m)
Diện tích của mảnh vườn: 37 x 22= 814(m2)
Lời giải:
Gọi chiều dài và chiều rộng mảnh vườn lúc đầu lần lượt là $a,b$ (m)
Theo bài ra ta có:
$a+b=118:2=59(1)$
$(a-5)(b+3)=ab-14$
$\Leftrightarrow 3a-5b=1(2)$
Từ $(1); (2)\Rightarrow a=37; b=22$ (m)
Diện tích mảnh vườn lúc đầu: $ab=37.22=814$ (m2)
Gọi chiều dài, chiều rộng của mảnh vườn lần lượt là a(m),b(m)(ĐK: a>0; b>0)
Nửa chu vi mảnh vườn là: 100/2=50(m)
Do đó, ta có: a+b=50
Tăng chiều rộng thêm 3m và giảm chiều dài đi 4m thì diện tích giảm 2m2 nên ta có:
(a-4)(b+3)=ab-2
=>ab+3a-4b-12=ab-2
=>3a-4b=10
Do đó, ta có hệ:
\(\left\{{}\begin{matrix}a+b=50\\3a-4b=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=150\\3a-4b=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}7b=140\\a+b=50\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=20\\a=30\end{matrix}\right.\)
Diện tích mảnh vườn là: \(20\cdot30=600\left(m^2\right)\)
Nửa chu vi hcn là: `100:2=50(m)`
Gọi chiều dài là `x (m)`
chiều rộng là `y (m)`
ĐK: `0 < y < x < 50`
Theo bài ra ta có hệ phương trình:
`{(x+y=50),(xy-2=(x-4)(y+3)):}`
`<=>{(x+y=50),(xy-2=xy+3x-4y-12):}`
`<=>{(x+y=50),(3x-4y=10):}`
`<=>{(x=30),(y=20):}`
Vậy diện tích mảnh vườn là: `30.20=600 m^2`.
Gọi chiều daì và chiều rộng lần lượt là x và y (x>y; x,y<17; m)
Một mảnh vườn HCN có chu vi 34m nên ta có PT: x+y=17 (1)
Nếu tăng chiều dài thêm 3m và tăng chiều rộng thêm 2m thì diện tích của nó tăng thêm 45m2 nên ta có PT:
(x+3)(y+2)-xy=45
⇔xy+2x+3y+6-xy=45
⇔2x+3y=39 (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x+y=17\\2x+3y=39\end{matrix}\right.\)
Giả hệ ra ta có: \(\left\{{}\begin{matrix}x=12\\y=5\end{matrix}\right.\)
Vậy...
2:
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có:
a+b=50 và (a-4)(b+3)=ab-2
=>a+b=50 và 3a-4b=10
=>a=30 và b=20
S=30*20=600m2
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2\left(a+b\right)=120\\\left(b+5+\dfrac{3}{4}a\right)=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=60\\\dfrac{3}{4}a+b=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{4}a=5\\a+b=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\\b=40\end{matrix}\right.\)
Diện tích ban đầu la 20x40=800(m2)
Nửa chu vi mảnh đất: \(25-x\) (m)
Gọi chiều rộng mảnh đất là x (m) với 0<x<50
Chiều dài mảnh đất là: \(25-x\) (m)
Chiều dài khi tăng 2 lần: \(2\left(25-x\right)\)
Chiều rộng khi giảm 5m: \(x-5\)
Nửa chu vi mới của mảnh đất là: \(2\left(25-x\right)+x-5=45-x\)
Do chu vi mảnh đất tăng 20m nên ta có pt:
\(2\left(45-x\right)=50+20\)
\(\Rightarrow x=10\left(m\right)\)
Chiều dài mảnh đất là: \(25-10=15\left(m\right)\)
Diện tích: \(15.10=150\left(m^2\right)\)