K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2022

\(a,=\dfrac{x+8\sqrt{x}+8-\left(\sqrt{x+2}\right)^2}{\sqrt{x}\left(\sqrt{x}+2\right)}:\dfrac{x+\sqrt{x}+3+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x+8\sqrt{x}+8-x-4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{2\sqrt{x}+x+5}\)

\(=\dfrac{4\sqrt{x}-4}{2\sqrt{x}+x+5}\)

Vậy \(P=\dfrac{4\sqrt{x}-4}{2\sqrt{x}+x+5}\)

 

 

 

23 tháng 6 2021

a) \(P=\dfrac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\dfrac{\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ =\dfrac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\dfrac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ =\dfrac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}=\dfrac{4x}{\sqrt{x}-3}\)

\(\left(x\ge0;x\ne4;9\right)\)

b)\(P=-1\Leftrightarrow4x+\sqrt{x}-3=0\Leftrightarrow\sqrt{x}=\dfrac{3}{4}\Leftrightarrow x=\dfrac{9}{16}\)

c) bpt đưa về dạng \(4mx>x+1\Leftrightarrow\left(4x-1\right)x>1\)

Nếu \(4m-1\le0\) thì tập nghiệm không thể chứa mọi giá trị \(x>9\); Nếu \(4m-1>0\) thì tập nghiệm bpt là \(x>\dfrac{1}{4m-1}\). Do đó bpt tm mọi \(x>9\Leftrightarrow9\ge\dfrac{1}{4m-1}\) và \(4m-1>0\). ta có \(m\ge\dfrac{5}{18}\)

12 tháng 1 2022

\(a,P=\dfrac{-x+2\sqrt{x}-1+x-2\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}:\dfrac{2\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ P=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

\(b,x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\\ \Rightarrow P=\dfrac{\sqrt{5}-1}{\sqrt{5}-1+1}=\dfrac{\sqrt{5}-1}{\sqrt{5}}=\dfrac{5-\sqrt{5}}{5}\\ c,\dfrac{P}{\sqrt{x}}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\cdot\dfrac{1}{\sqrt{x}}=\dfrac{1}{\sqrt{x}-1}\le\dfrac{1}{0-1}=-1\)

Vậy \(\left(\dfrac{P}{\sqrt{x}}\right)_{max}=-1\Leftrightarrow x=0\)

a: \(=\dfrac{4x-8\sqrt{x}+8x}{x-4}:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4\sqrt{x}\left(3\sqrt{x}-2\right)}{x-4}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}=\dfrac{-4x\left(3\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

b: \(m\left(\sqrt{x}-3\right)\cdot B>x+1\)

=>\(-4xm\left(3\sqrt{x}-2\right)>\left(\sqrt{x}+2\right)\cdot\left(x+1\right)\)

=>\(-12m\cdot x\sqrt{x}+8xm>x\sqrt{x}+2x+\sqrt{x}+2\)

=>\(x\sqrt{x}\left(-12m-1\right)+x\left(8m-2\right)-\sqrt{x}-2>0\)

Để BPT luôn đúng thì m<-0,3

4 tháng 4 2022

\(a,\)

\(=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right):\left(\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right):\left(\dfrac{3}{3\sqrt{x}+1}\right)\)

\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(=\dfrac{3\sqrt{x}+3x}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(=\dfrac{3\sqrt{x}+1}{3\sqrt{x}-1}\)

Vậy \(P=\dfrac{3\sqrt{x}+1}{3\sqrt{x}-1}\)

\(b,\)Thay \(P=\dfrac{6}{5}\) vào pt, ta có :

\(\dfrac{3\sqrt{x}+1}{3\sqrt{x}-1}=\dfrac{6}{5}\)

\(\Leftrightarrow5\left(3\sqrt{x}+1\right)=6\left(3\sqrt{x}-1\right)\)

\(\Leftrightarrow15\sqrt{x}+5-18\sqrt{x}+6=0\)

\(\Leftrightarrow-3\sqrt{x}+11=0\)

\(\Leftrightarrow-3\sqrt{x}=-11\)

\(\Leftrightarrow\sqrt{x}=\dfrac{11}{3}\)

\(\Leftrightarrow x=\left(\dfrac{11}{3}\right)^2\)

\(\Leftrightarrow x=\dfrac{121}{9}\)

Vậy \(x=\dfrac{121}{9}\) thì \(P=\dfrac{6}{5}\)

 

 

22 tháng 10 2023

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x< >1\end{matrix}\right.\)

\(A=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)

\(=\dfrac{x-1}{\sqrt{x}}:\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1+1-\sqrt{x}}\)

\(=\dfrac{x-1}{x-\sqrt{x}}\cdot\left(\sqrt{x}+1\right)\)

\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

b: \(x=\dfrac{2}{2+\sqrt{3}}=2\left(2-\sqrt{3}\right)=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)

Khi \(x=\left(\sqrt{3}-1\right)^2\) thì \(P=\dfrac{\left(\sqrt{3}-1+1\right)^2}{\sqrt{3}-1}=\dfrac{3}{\sqrt{3}-1}=\dfrac{3\left(\sqrt{3}+1\right)}{2}=\dfrac{3\sqrt{3}+3}{2}\)

c: \(P-2=\dfrac{x+2\sqrt{x}+1}{\sqrt{x}}-2\)

\(=\dfrac{x+2\sqrt{x}+1-2\sqrt{x}}{\sqrt{x}}=\dfrac{x+1}{\sqrt{x}}>0\)

=>P>2

25 tháng 7 2023

\(a,P=\dfrac{3\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\left(dk:x\ge0,x\ne1\right)\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{3\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{3\sqrt{x}-\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\left(\sqrt{x}+2\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}+2}\\ =\dfrac{2\sqrt{x}+4-\sqrt{x}-1}{\sqrt{x}+2}\\ =\dfrac{\sqrt{x}+3}{\sqrt{x}+2}\)

\(b,x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\)

\(\Rightarrow P=\dfrac{\sqrt{\left(\sqrt{5}-1\right)^2}+3}{\sqrt{\left(\sqrt{5}-1\right)^2}+2}=\dfrac{\left|\sqrt{5}-1\right|+3}{\left|\sqrt{5}-1\right|+2}=\dfrac{\sqrt{5}-1+3}{\sqrt{5}-1+2}=\dfrac{\sqrt{5}+2}{\sqrt{5}+1}\)

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\dfrac{1}{9}\end{matrix}\right.\)

Ta có: \(P=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{5\sqrt{x}}{9x-1}\right):\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+5\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}:\left(\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)

\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+5\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\cdot\dfrac{3\sqrt{x}+1}{3}\)

\(=\dfrac{3x}{3\sqrt{x}-1}\cdot\dfrac{1}{3}\)

\(=\dfrac{x}{3\sqrt{x}-1}\)

b) Ta có: \(9x^2-10x+1=0\)

\(\Leftrightarrow\left(9x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{9}\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

Thay x=1 vào P, ta được:

\(P=\dfrac{1}{3-1}=\dfrac{1}{2}\)

c) Thay \(x=8-2\sqrt{7}\) vào P, ta được:

\(P=\dfrac{8-2\sqrt{7}}{3\left(\sqrt{7}-1\right)-1}=\dfrac{8-2\sqrt{7}}{3\sqrt{7}-4}\)

\(=\dfrac{-10+16\sqrt{7}}{47}\)

10 tháng 7 2021

a)

\(P=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-4\right)+5\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(P=\dfrac{3x-2\sqrt{x}-1-3\sqrt{x}+4+5\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(P=\dfrac{3\left(x+1\right)}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(P=\dfrac{x+1}{3\sqrt{x}-1}\)

26 tháng 8 2021

đk : \(x\ge0,x\ne1\)

\(=>P=\left[\dfrac{2\left(\sqrt{x}+2\right)-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right]:\left[\dfrac{x+\sqrt{x}-2+3-x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right]\)

\(P=\left[\dfrac{2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right].\left[\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+1}\right]\)

\(P=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)

b,\(x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\) thay vào P

\(=>P=\dfrac{2\sqrt{\left(\sqrt{5}-1\right)^2}-1}{\sqrt{\left(\sqrt{5}-1\right)^2}+1}=\dfrac{2\sqrt{5}-3}{\sqrt{5}}\)

c,\(=>\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}}=>2x-\sqrt{x}=\sqrt{x}+1\)

\(=>2x-2\sqrt{x}-1=0< =>2\left(x-\sqrt{x}-\dfrac{1}{2}\right)=0\)

\(=>x-\sqrt{x}-\dfrac{1}{2}=>\Delta=1-4\left(-\dfrac{1}{2}\right)=3>0=>\left[{}\begin{matrix}x1=\dfrac{1+\sqrt{3}}{2}\\x2=\dfrac{1-\sqrt{3}}{2}\end{matrix}\right.\)

đối chiếu đk loại x2 còn x1 thỏa