K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2017

( x3 - 2x2 + x - 1 ) ( 5-x )
= 5x3 - x4 - 10x2 + 2x3 + 5x - x2 - 5 + x
= - x4 + 7x3 -11x2 + 6x - 5
=> ( x3 - 2x2 + x -1 ) ( x - 5 )
= x4 - 7x3 + 11x2 - 6x + 5

3 tháng 2 2017

= 5.x- 2 x2.5 + x.5 - 1.5 x.x-2x2.x+ x.x-1.x

=5x3 - 10x+ 5x - 5 -x- 2x3 + x2- x

= x4 + 3x- 9x2 + 4x

21 tháng 8 2021

a) 2(x-1)2 - 4(x+3)2 + 2x(x-5)

= 2(x-2x +1)- 4(x2 + 6x +9) + 2x2 -10x

= 2x2 - 4x + 2 -4x2 - 24x - 36 + 2x2 - 10x

= (2x2 + 2x2 - 4x2) - (4x + 24x+10x) +(2-36)

= -38x-34

b) 2(2x+5)2  -3(4x+1)(1-4x)

= 2(4x2 + 20x + 25) + 3(4x+1)(4x-1)

= 8x2 +40x + 50 + 3(16x2 -1)

= 8x2 + 40x + 50 + 48x2 - 3

=56x2 +40x + 47

21 tháng 8 2021

a, \(2\left(x-1\right)^2-4\left(x+3\right)^2+2x\left(x-5\right)\)

\(=2\left(x^2-2x+1\right)-4\left(x^2+6x+9\right)+2x\left(x-5\right)\)

\(=2x^2-4x+2-4x^2-24x-36+2x^2-10=-28x-44\)

b, \(2\left(2x+5\right)^2-3\left(4x+1\right)\left(1-4x\right)\)

\(=2\left(4x^2+20x+25\right)-3\left(1-16x^2\right)\)

\(=8x^2+40x+50-3+48x^2=56x^2+40x+47\)

1 tháng 11 2018

Bài 1:

a) 2x^2 -3x + 1 = 2x^2 -2x -x +1 = 2x.(x-1) - (x-1) = (x-1).(2x-1)

b) 2x^3y - 2xy^3 - 4xy^2 - 2xy = 2xy.(x^2 - y^2 - 2y -1) = 2xy.[ x^2 - (y^2 + 2y+1)] = 2xy.[x^2 - (y+1)^2]

= 2xy.(x-y-1).(x+y+1)

1 tháng 11 2018

c) (x^2 + x+3).(x^2 + x +5) - 8 = (x^2+x+4-1).(x^2+x+4+1) - 8 = (x^2+x+4)^2 - 1 - 8 = (x^2+x+4)^2 - 3^2

= (x^2+x+4-3).(x^2+x+4+3) = (x^2+x+1).(x^2+x+7)

Bài 2:

a) (x+2).(x^2-2x+4) - (x^3+2x) = 0

x^3 + 8 - x^3 - 2x = 0

8 - 2x = 0

x = 4

b) x^2 - 2x - 8 = 0

x^2 +2x - 4x - 8 = 0

x.(x+2) - 4.(x+2) = 0

(x+2).(x-4) = 0

...

bn tự làm tiếp nha

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7

26 tháng 5 2021

Ta có : \(\left(x-1\right)\left(x-3\right)=x^2-3x-x+3=x^2-4x+3\)

Vậy chọn D 

26 tháng 5 2021

đáp án d

22 tháng 8 2018

1)   bạn ktra lại đề

2)  \(x^6+2x^5+x^4-2x^3-2x^2+1=\left(x^3+x^2-1\right)^2\)

3) 

a)  \(x^2+x-2=0\)

<=>  \(\left(x-1\right)\left(x+2\right)=0\)

<=>  \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy...

b)  \(3x^2+5x-8=0\)

<=>  \(\left(x-1\right)\left(3x+8\right)=0\)

<=>  \(\orbr{\begin{cases}x=1\\x=-\frac{8}{3}\end{cases}}\)

Vậy...

22 tháng 8 2018

2) \(x^6+2x^5+x^4-2x^3-2x^2+1\)

\(=\left(x^6+2x^5+x^4\right)-\left(2x^3+2x^2\right)+1\)

\(=\left(x^3+x^2\right)^2-2\left(x^3+x^2\right)+1\)

\(=\left(x^3+x^2-1\right)^2\)

4 tháng 8 2017

Mình sửa: Bài 1
2)x2+3x-15

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)