Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
a. 1 - 2y + y2
= (1 - y)2
b. (x + 1)2 - 25
= (x + 1)2 - 52
= (x + 1 - 5)(x + 1 + 5)
= (x - 4)(x + 6)
c. 1 - 4x2
= 12 - (2x)2
= (1 - 2x)(1 + 2x)
d. 8 - 27x3
= 23 - (3x)3
= (2 - 3x)(4 + 6x + 9x2)
e. (đề hơi khó hiểu ''x3'' !?)
g. x3 + 8y3
= (x + 2y)(x2 - 2xy + y2)
d)
$(x^2+x)^2+4x^2+4x-12$
$=(x^2+x)^2+4(x^2+x)-12$
$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$
$=(x^2+x)(x^2+x-2)+6(x^2+x-2)$
$=(x^2+x+6)(x^2+x-2)=(x^2+x+6)(x+2)(x-1)$
e)
$(x^2+2x)^2+9x^2+18x+20$
$=(x^2+2x)^2+9(x^2+2x)+20$
$=(x^2+2x)^2+4(x^2+2x)+5(x^2+2x)+20$
$=(x^2+2x)(x^2+2x+4)+5(x^2+2x+4)$
$=(x^2+2x+4)(x^2+2x+5)$
a)
$(x^2+x)^2+3(x^2+x)+2$
$=(x^2+x)^2+(x^2+x)+2(x^2+x)+2$
$=(x^2+x)(x^2+x+1)+2(x^2+x+1)=(x^2+x+1)(x^2+x+2)$
b)
$(x^2+x)^2-2(x^2+x)-15$
$=(x^2+x)^2+3(x^2+x)-5(x^2+x)-15$
$=(x^2+x)(x^2+x+3)-5(x^2+x+3)$
$=(x^2+x+3)(x^2+x-5)$
c)
$(x^2+x+1)(x^2+x+2)-12=(x^2+x+1)^2+(x^2+x+1)-12$
$=(x^2+x+1)^2-3(x^2+x+1)+4(x^2+x+1)-12$
$=(x^2+x+1)(x^2+x+1-3)+4(x^2+x+1-3)$
$=(x^2+x+1-3)(x^2+x+1+4)=(x^2+x-2)(x^2+x+5)$
$=[x(x-1)+2(x-1)](x^2+x+5)=(x+2)(x-1)(x^2+x+5)$
Lời giải:
Để pt có 2 nghiê pb thì:
$\Delta'=1-(m-3)>0\Leftrightarrow m< 4$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=m-3\end{matrix}\right.\)
Khi đó:
\(x_1^2-2x_2+x_1x_2=-12\)
\(\Leftrightarrow x_1^2-2(2-x_1)+x_1(2-x_1)=-12\)
\(\Leftrightarrow x_1=-2\Leftrightarrow x_2=2-x_1=4\)
$m-3=x_1x_2=(-2).4=-8$
$\Leftrightarrow m=-5$ (tm)
\(\Delta=\left(m+12\right)^2+44>0\)
=> PT luôn có 2 nghiệm phân biệt với mọi m
Theo hệ thức Vi-et ta có \(x_1+x_2=-m-12\)
Vì x1>x2 nên x2<0
=> |x1|-|x2|=15
<=> x1+x2=15
<=> -m-12=15
<=> m=-27
Vậy.........
\(x^2-x+1-m=0\left(1\right)\\ \text{PT có 2 nghiệm }x_1,x_2\\ \Leftrightarrow\Delta=1-4\left(1-m\right)\ge0\\ \Leftrightarrow4m-3\ge0\Leftrightarrow m\ge\dfrac{3}{4}\\ \text{Vi-ét: }\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=1-m\end{matrix}\right.\\ \text{Ta có }5\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+4=0\\ \Leftrightarrow5\cdot\dfrac{x_1+x_2}{x_1x_2}-x_1x_2+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m-1+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m+3=0\\ \Leftrightarrow5+\left(1-m\right)\left(m+3\right)=0\\ \Leftrightarrow m^2+2m-8=0\\ \Leftrightarrow m^2-2m+4m-8=0\\ \Leftrightarrow\left(m-2\right)\left(m+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(n\right)\\m=-4\left(l\right)\end{matrix}\right.\)
Vậy $m=2$
a,\(\left(x^2+x\right)2+3\left(x^2+x\right)+2\)
=\(\left(x^2+x\right)6+2\)
b,\(\left(x^2+x\right)2-2\left(x^2+x\right)-15\)
=\(-4\left(x^2+x\right)-15\)
c,\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
=\(\left(x^2+x+1\right)\left(x^2+x+1\right)+1-12\)
=\(\left(x^2+x+1\right)^2-11\)
d,\(\left(x^2+x\right)2+4x^2+4x-12\)
=\(x\left(x+1\right)2+2x\left(x+1\right)-12\)
=\(2x\left(x+1\right)+2x\left(x+1\right)-12\)
=\(\left(x+1\right)\left(2x+2x-12\right)\)
= \(\left(x+1\right)\left(4x-12\right)=4\left(x+1\right)\left(x-3\right)\)
e,\(\left(x^2+2x\right)2+9x^2+18x+20\)
=\(x\left(x+2\right)2+9x\left(x+2\right)+20\)
=\(2x\left(x+2\right)+9x\left(x+2\right)+20=\left(x+2\right)\left(2x+9x+20\right)\)
=\(\left(x+2\right)\left(11x+20\right)\)
thực ra mk cx ko chắc là đúng hết nha