K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=cos^2a+\dfrac{sin^2a}{cos^2a}\cdot cos^2a=cos^2a+sin^2a=1\)

\(P=\dfrac{\sin60^0+\tan^230^0}{\cos30^0-\cot60^0}=\left(\dfrac{\sqrt{3}}{2}+\dfrac{1}{3}\right):\left(\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{3}}{3}\right)\)

\(=\dfrac{3\sqrt{3}+2}{6}:\dfrac{3\sqrt{3}-2\sqrt{3}}{6}\)

\(=\dfrac{3\sqrt{3}+2}{\sqrt{3}}=\dfrac{6+2\sqrt{3}}{3}\)

27 tháng 9 2018

a) 1 + tan22 a =1 +(\(\dfrac{sina}{cosa}\))2 =\(\dfrac{sina+cosa}{cos^2a}\)=\(\dfrac{1}{cos^2a}\)

b) 1 + cot2 a= 1 +(\(\dfrac{cosa}{sina}\))2 = \(\dfrac{cosa+sina}{sin^2a}\)=\(\dfrac{1}{sin^2a}\)

c) tan2 a (2 sin2a + 3 cos2 a - 2)

=tan2 a[cos2 a +2 (\(sina^2+cos^2a\))-2 ]

=\(\dfrac{sin^2a}{cos^2a}\)×\(cos^2a=sin^2a\)

b: \(1+cot^2a=1+\left(\dfrac{cosa}{sina}\right)^2=\dfrac{1}{sin^2a}\)

c: \(=tan^2a\left[2\left(1-cos^2a\right)+3cos^2a-2\right]\)

\(=tan^2a\left[cos^2a\right]\)

\(=\dfrac{sin^2a}{cos^2a}\cdot cos^2a=sin^2a\)

20 tháng 9 2017
Câu a dùng sin^2a+cos^2a=1 và a^2-b^2=(a-b)(a+b). Kết quả=sin^2 Câu b tương tự=2 Câu c tách sina ra ngoài và được sin^3a Câu d dùng hđt a^2+2ab+b^2=(a+b)^2 và kết quả là 1 Câu e tách tan^2a ra ngoài và được tan^2*cos^2 mà tana=sina/cosa. Kết quả bằng sin^2a Câu f có tan^2*cos^2=sin^2a nên kết quả câu f=1 Chú thích chút ^ là mũ, a là alpha,* là nhân
5 tháng 11 2021
Giải. Áp dụng công thức lượng giác.

Bài tập Tất cả

24 tháng 8 2017

a. \(\dfrac{1+2sin\alpha cos\alpha}{cos^2\alpha-sin^2\alpha}=\dfrac{sin^2\alpha+2sin\alpha cos\alpha+cos^2}{\left(cos\alpha-sin\alpha\right)\left(cos\alpha+sin\alpha\right)}=\dfrac{\left(sin\alpha+cos\alpha\right)^2}{\left(cos\alpha-sin\alpha\right)\left(cos\alpha+sin\alpha\right)}=\dfrac{sin\alpha+cos\alpha}{cos\alpha-sin\alpha}\)

24 tháng 8 2017

b. C = \(sin^4a+sin^2a.cos^2a+cos^2a=\left(1-cos^2\right)^2+\left(1-cos^2a\right)cos^2a+cos^2a=1-2cos^2+cos^4a+cos^2a-cos^4a+cos^2a=1\)

a) \(\tan^2\alpha+1=\frac{\sin^2\alpha}{\cos^2\alpha}+1=\frac{\sin^2\alpha+\cos^2\alpha}{\cos^2\alpha}=\frac{1}{\cos^2\alpha}\)

b) \(\cot^2\alpha+1=\frac{\cos^2\alpha}{\sin^2\alpha}+1=\frac{\cos^2\alpha+\sin^2\alpha}{\sin^2\alpha}=\frac{1}{\sin^2\alpha}\)

c) \(\cos^4\alpha-\sin^4\alpha=\left(\cos^2\alpha+\sin^2\alpha\right)\left(\cos^2\alpha-\sin^2\alpha\right)=\cos^2\alpha-\sin^2\alpha\)

\(=2\cos^2\alpha-\left(\sin^2\alpha+\cos^2\alpha\right)=2\cos^2-1\)

5 tháng 6 2020

\(sin^2a+cos^2a-sin^4a-2cos^2a+sin^2a\)

\(=2sin^2a-cos^2a-sin^4a\)

\(=2sin^2a-cos^2a-\left(\frac{1-cos2a}{2}\right)^2\)

khai triển ra rồi quy đồng lên

\(=\frac{8sin^2a-4cos^2a-1+2cos2a-cos^22a}{4}\)

Mà \(2cos2a=2\left(cos^2a-1\right)=4cos^2-2\)

\(\Rightarrow\frac{8sin^2a-cos^22a-3}{4}\)

Mà \(-cos^22a=sin^22a-1=4sin^2cos^2-1\)

\(\Rightarrow\frac{8sin^2a+4sin^2a.cos^2a-4}{4}\)

\(=\frac{4sin^2a.\left(2-cos^2a\right)-4}{4}\)

\(=sin^2a\left(1+sin^2a\right)-1\)

\(=sin^4a-cos^2a\)

5 tháng 6 2020

viết lại đề đi cậu ơi