Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(log_3\dfrac{6}{5}>log_3\dfrac{5}{6}\) vì \(\dfrac{6}{5}>\dfrac{5}{6}\)
b) \(log_{\dfrac{1}{3}}9>log_{\dfrac{1}{3}}17\) vì \(9>17\) và \(0< \dfrac{1}{3}< 1\).
c) \(log_{\dfrac{1}{2}}e>log_{\dfrac{1}{2}}\pi\) vì \(e>\pi\) và \(0< \dfrac{1}{2}< 1\)
d) \(log_2\dfrac{\sqrt{5}}{2}>log_2\dfrac{\sqrt{3}}{2}\) vì \(\dfrac{\sqrt{5}}{2}>\dfrac{\sqrt{3}}{2}\).
Em rất muốn biết ... anh học lớp mấy vậy ??? Đây là bài lớp 12 mà
a) \(A=\log_{5^{-2}}5^{\frac{5}{4}}=-\frac{1}{2}.\frac{5}{4}.\log_55=-\frac{5}{8}\)
b) \(B=9^{\frac{1}{2}\log_22-2\log_{27}3}=3^{\log_32-\frac{3}{4}\log_33}=\frac{2}{3^{\frac{3}{4}}}=\frac{2}{3\sqrt[3]{3}}\)
c) \(C=\log_3\log_29=\log_3\log_22^3=\log_33=1\)
d) Ta có \(D=\log_{\frac{1}{3}}6^2-\log_{\frac{1}{3}}400^{\frac{1}{2}}+\log_{\frac{1}{3}}\left(\sqrt[3]{45}\right)\)
\(=\log_{\frac{1}{3}}36-\log_{\frac{1}{3}}20+\log_{\frac{1}{3}}45\)
\(=\log_{\frac{1}{3}}\frac{36.45}{20}=\log_{3^{-1}}81=-\log_33^4=-4\)
a) \(\left(\dfrac{1}{9}\right)^{\dfrac{1}{2}log^4_3}=\left(3^{-2}\right)^{\dfrac{1}{2}log^4_3}=\left(3^{log^4_3}\right)^{-2.\dfrac{1}{2}}=4^{-1}=\dfrac{1}{4}\);
b) \(10^{3-log5}=\dfrac{10^3}{10^{log5}}=\dfrac{10^3}{5}=200\);
c) \(2log^{log1000}_{27}=2log^3_{3^3}=\dfrac{2}{3}log^3_3=\dfrac{2}{3}\);
d) \(3log_2^{log_4^{16}}+log^2_{\dfrac{1}{2}}=3log^2_2-log^2_2=3-1=2\).
a) Tập xác định của hàm số là :
\(D=\left(-\infty;-4\right)\cup\left(4;+\infty\right)\)
b) Tập xác định của hàm số là :
\(D=\left(1;+\infty\right)\)
c) Hàm số xác định khi và chỉ khi \(\begin{cases}x^2-3x+2\ge0\\\sqrt{x^2-3x+2}+4-x\ge1^{ }\end{cases}\) \(\Leftrightarrow\) \(x\le1\) V \(x\ge2\)
Tập xác định là \(D=\left(-\infty;1\right)\cup\left(2;+\infty\right)\)
d) Hàm số xác định khi và chỉ khi
\(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\x-1>0\\\log_{0,5}\left(x-1\right)\le0\\x^2-2x-8>0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x>1\\x-1\ge1\\x<-2,x>4\end{cases}\) \(\Leftrightarrow\)\(x\ge\frac{11}{2}\)
Vậy tập xác định là \(D=\left(\frac{11}{2};+\infty\right)\)
Chọn 2 làm cơ số, ta có :
\(A=\log_616=\frac{\log_216}{\log_26}=\frac{4}{1=\log_23}\)
Mặt khác :
\(x=\log_{12}27=\frac{\log_227}{\log_212}=\frac{3\log_23}{2+\log_23}\)
Do đó : \(\log_23=\frac{2x}{3-x}\) suy ra \(A=\frac{4\left(3-x\right)}{3+x}\)
b) Ta có :
\(B=\frac{lg30}{lg125}=\frac{lg10+lg3}{3lg\frac{10}{2}}=\frac{1+lg3}{3\left(1-lg2\right)}=\frac{1+a}{3\left(1-b\right)}\)
c) Ta có :
\(C=\log_65+\log_67=\frac{1}{\frac{1}{\log_25}+\frac{1}{\log_35}}+\frac{1}{\frac{1}{\log_27}+\frac{1}{\log_37}}\)
Ta tính \(\log_25,\log_35,\log_27,\log_37\) theo a, b, c .
Từ : \(a=\log_{27}5=\log_{3^3}5=\frac{1}{3}\log_35\)
Suy ra \(\log_35=3a\) do đó :
\(\log_25=\log_23.\log35=3ac\)
Mặt khác : \(b=\log_87=\log_{2^3}7=\frac{1}{3}\log_27\) nên \(\log_27=3b\)
Do đó : \(\log_37=\frac{\log_27}{\log_23}=\frac{3b}{c}\)
Vậy : \(C=\frac{1}{\frac{1}{3ac}+\frac{1}{3a}}+\frac{1}{\frac{1}{3b}+\frac{c}{3b}}=\frac{3\left(ac+b\right)}{1+c}\)
d) Điều kiện : \(a>0;a\ne0;b>0\)
Từ giả thiết \(\log_ab=\sqrt{3}\) suy ra \(b=a^{\sqrt{3}}\). Do đó :
\(\frac{\sqrt{b}}{a}=a^{\frac{\sqrt{3}}{2}-1};\frac{\sqrt[3]{b}}{\sqrt{a}}=a^{\frac{\sqrt{3}}{3}-\frac{1}{2}}=a^{\frac{\sqrt{3}}{3}\left(\frac{\sqrt{3}}{2}-1\right)}\)
Từ đó ta tính được :
\(A=\log_{a^{\alpha}}a^{\frac{-\sqrt{3}}{3}\alpha}=\log_{a^{\alpha}}\left(a^{\alpha}\right)^{\frac{-\sqrt{3}}{3}}=\frac{-\sqrt{3}}{3}\) với \(\alpha=\frac{\sqrt{3}}{2}-1\)
a) = = -3.
b) = = .
hoặc dùng công thức đổi cơ số : = = = .
c) = = .
d) = = 3.