K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

a, 5x2 - 45x = 5x(x - 9)

b, 3x3y - 6x2y - 3xy3 - 6axy2 - 3a2xy + 3xy

= 3xy(x2 - 2x - y2 - 2ay - a2 + 1)

= 3xy[ (x2 - 2x + 1) - (a2 + 2ay + y2) ]

= 3xy[ (x - 1)2 - (a + y)2 ]

= 3xy(x - 1 + a + y)(x - 1 - a - y)

f, 3xy2 - 12xy + 12x

= 3x(y2 - 4y + 4)

= 3x(y - 2)2

g, 2x2 - 8x + 8

= 2(x2 - 4x + 4)

= 2(x - 2)2

h, 5x3 + 10x2y + 5xy2

= 5x( x2 + 2xy + y2 )

= 5x(x + y)2

k, x2 + 4x - 2xy - 4y + y2

= (x2 - 2xy + y2) + (4x - 4y)

= (x - y)2 + 4(x - y)

= (x - y)(x - y + 4)

i, x3 + ax2 - 4a - 4x

= (x3 - 4x) + (ax2 - 4a)

= x(x2 - 4) + a(x2 - 4)

= (x + a)(x2 - 4)

= (x + a)(x + 2)(x - 2)

Chúc bạn học tốt !

11 tháng 2 2020

thanks

23 tháng 2 2020

Bài 1 : Khai triển :

a, \(\left(x+5\right)^2=x^2+10x+25\)

b, \(\left(x-3y\right)^2=x^2-6xy+9y^2\)

c, \(\left(x^2-6z\right)\left(x^2+6z\right)=x^4-36z^2\)

d, \(\left(x+3y\right)^3=x^3+9x^2y+27xy^2+27y^3\)

e, \(27x^3-9y^2+y-\frac{1}{27}=\left(3x-\frac{1}{3}\right)^3\)

g, \(8x^6+12x^4y+6x^2y^2+y^3=\left(2x^2+y\right)\)

h, \(4x^2+12x^4y+6x^22y^2+y^3=\left(\sqrt[3]{4x^2}+y\right)\)

20 tháng 9 2019

1,5x2+10xy+5y2

=5.[x2+2xy+y2]

=5[x+y]2

2,6x2+12xy+6y2

=6[x2+2xy+y2]

=6[x+y]2

3,2x3+4x2y+2xy2

=2x[x2+2xy+y2]

=2x[x+y]2

TICK CHO MIK LÀM TÍPhiuhiu

20 tháng 9 2019

4,-3x4y-6x3y2-3x2y3

=-3yx2[x2+2xy+y2]

=-3yx2[x+y]2

23 tháng 4 2020

* 45x(3 - x) = 15x(x - 3)3

\(\Leftrightarrow\) 45x(3 - x) - 15x(x - 3)3 = 0

\(\Leftrightarrow\) 45x(3 - x) + 15x(3 - x)3 = 0

\(\Leftrightarrow\) 15x(3 - x)[3 + (3 - x)2] = 0

\(\Leftrightarrow\left[{}\begin{matrix}15x=0\\3-x=0\\3+\left(3-x\right)^2=0\end{matrix}\right.\)

Vì 3 + (3 - x)2 > 0 với mọi x

\(\Rightarrow\) 15x = 0 hoặc 3 - x = 0

\(\Leftrightarrow\) x = 0 và x = 3

Vậy S = {0; 3}

* 7x2 + 14x + 7 = 3x2 + 3x

\(\Leftrightarrow\) 7(x2 + 2x + 1) = 3x(x + 1)

\(\Leftrightarrow\) 7(x + 1)2 = 3x(x + 1)

\(\Leftrightarrow\) 7(x + 1)2 - 3x(x + 1) = 0

\(\Leftrightarrow\) (x + 1)[7(x + 1) - 3x] = 0

\(\Leftrightarrow\) (x + 1)(7x + 7 - 3x) = 0

\(\Leftrightarrow\) (x + 1)(4x + 7) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\4x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{-7}{4}\end{matrix}\right.\)

Vậy S = {-1; \(\frac{-7}{4}\)}

* 3x2 - 12x + 12 = x4 - 8x

\(\Leftrightarrow\) 3(x2 - 4x + 4) = x(x3 - 8)

\(\Leftrightarrow\) 3(x - 2)2 = x(x - 2)(x2 + 2x + 4)

\(\Leftrightarrow\) 3(x - 2)2 - x(x - 2)(x2 + 2x + 4) = 0

\(\Leftrightarrow\) (x - 2)[3(x - 2) - x(x2 + 2x + 4)] = 0

\(\Leftrightarrow\) (x - 2)(3x - 6 - x3 - 2x2 - 4x) = 0

\(\Leftrightarrow\) (x - 2)(-x3 - 2x2 - x - 6) = 0

\(\Leftrightarrow\) -1(x - 2)(x3 + 2x2 + x + 6) = 0

\(\Leftrightarrow\) (x - 2)[x(x2 + 2x + 1) + 6] = 0

\(\Leftrightarrow\) (x - 2)[x(x + 1)2 + 6] = 0

Ta có: x(x + 1)2 + 6 = 0

\(\Leftrightarrow\) x(x + 1)2 = -6

Nếu x = -2 thì (x + 1)2 = 3 hay (x + 1)2 + 3 = 0

mà (x + 1)2 + 3 > 0 với mọi x nên x không thỏa mãn giá trị trên

Nếu x = 2 thì (x + 1)2 = -3 (loại vì KTM)

Nếu x = 1 thì (x + 1)2 = -6 (loại vì KTM)

Nếu x = -1 thì (x + 1)2 = 6

Thay x = -1 vào pt (x + 1)2 = 6 ta được:

(-1 + 1)2 = 6

\(\Leftrightarrow\) 0 = 6 (KTM)

Từ đó suy ra phương trình x(x + 1)2 + 6 = 0 vô nghiệm

\(\Rightarrow\) x - 2 = 0

\(\Leftrightarrow\) x = 2

Vậy S = {2}

* y2 - x2 = x3 - 3x2y + 3xy2 - y3

\(\Leftrightarrow\) (y - x)(y + x) = (x - y)3

\(\Leftrightarrow\) (y - x)(y + x) - (x - y)3 = 0

\(\Leftrightarrow\) (y - x)(y + x) + (y - x)3 = 0

\(\Leftrightarrow\) (y - x)[y + x + (y - x)2] = 0

Vì y + x + (y - x)2 > 0 với mọi x

\(\Rightarrow\) y - x = 0

\(\Leftrightarrow\) x = y

Vậy S = {y}

Chúc bn học tốt!!

1: \(\Leftrightarrow x^2-25-x^2-8x-16+\left(4x+1\right)^3=64x^3+8+48x^2-12x\)

\(\Leftrightarrow-8x-41+64x^3+48x^2+12x+1=64x^3+48x^2-12x+8\)

=>4x-40=-12x+8

=>16x=48

hay x=3

2: \(\Leftrightarrow12x^2-48x-x^3+1+x^3-12x^2+48x-64=x^2-2x-3-x^2-10x-25\)

\(\Leftrightarrow-63=-12x-28\)

=>12x+28=63

=>12x=35

hay x=35/12

11 tháng 10 2020

a) \(4x^3y-12x^2y^3-8x^4y^3\)

\(=4x^2y\left(x-3y^2-2x^2y^2\right)\)

b) \(2x^2+4x+2-2y^2\)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left[\left(x+1\right)^2-y^2\right]\)

\(=2\left(x-y+1\right)\left(x+y+1\right)\)

c) \(x^3-2x^2+x-xy^2\)

\(=x\left(x^2-2x+1-y^2\right)\)

\(=x\left[\left(x-1\right)^2-y^2\right]\)

\(=x\left(x-y-1\right)\left(x+y-1\right)\)

d) \(x\left(x-2y\right)+3\left(2y-x\right)\)

\(=x\left(x-2y\right)-3\left(x-2y\right)\)

\(=\left(x-3\right)\left(x-2y\right)\)

e) \(x^2+4\)

\(=\left(x^4+4x^2+4\right)-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

f) \(5x^2-7x-6\)

\(=\left(5x^2-10x\right)+\left(3x-6\right)\)

\(=5x\left(x-2\right)+3\left(x-2\right)\)

\(=\left(5x+3\right)\left(x-2\right)\)

17 tháng 8 2016

cái này là phép toán dễ mà, chỉ cần nắm vũng kiến thức trong chương  1 sách lớp 8 là đc có j đâu?

17 tháng 8 2016

đúng vậy