Trong hình trên biết:

AB\(\perp\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

F C A D B E 1 2 3 x

Kéo dài DA

Ta có:
\(\widehat{A3} + \widehat{C} = 140^O + 40^O = 180^O\)

mà 2 góc này nằm ở vị trí trong cùng phía

\(\Rightarrow\) CF // DA (dhnb)

 

 

\(\widehat{A3} + \widehat{A1} = 180^O\) (kề bù)

\(140^O + \widehat{A1} = 180^O (\widehat{A3} = 140^O(gt))\)

\(\widehat{A1} = 180^O - 140^O\)

\(\widehat{A1} = 40^O\)

 

\(\widehat{A1} + \widehat{A2} = \widehat{BAC}\) (Ax nằm giữa 2 tia AB và AC)

\(40^O + \widehat{A2} = 90^O (\widehat{A1} = 40^O(cmt); AB \perp AC (gt))\)

\(\widehat{A2} = 90^O - 40^O\)

\(\widehat{A2} = 50^O\)

 

\(\Rightarrow\)\(\widehat{A2} = \widehat{B} = 50^O\)

mà 2 góc này nằm ở vị trí so le trong.

\(\Rightarrow\)   BE // DA (dhnb)

mà  CF // DA (cmt)

\(\Rightarrow\) CF // BE (Định lí 3 trong bìa từ vuông góc đến song song)

26 tháng 6 2018

Giải:

a) Vẽ tia đối của AD là AO

Ta có:

\(\widehat{DAC}+\widehat{CAO}=180^0\) (Hai góc kề bù)

\(\Leftrightarrow140^0+\widehat{CAO}=180^0\)

\(\Leftrightarrow\widehat{CAO}=40^0\)

\(\Leftrightarrow\widehat{CAO}=\widehat{C}\left(=40^0\right)\)

\(\Leftrightarrow AD//CF\) (Vì có hai góc so le trong bằng nhau)

b) Ta có:

\(\widehat{CAO}+\widehat{BAO}=\widehat{BAC}\)

\(\Leftrightarrow40^0+\widehat{BAO}=90^0\)

\(\Leftrightarrow\widehat{BAO}=50^0\)

\(\Leftrightarrow\widehat{BAO}=\widehat{B}\left(=50^0\right)\)

\(\Leftrightarrow AD//BE\) (Vì có hai góc so le trong bằng nhau)

Vậy ...

Câu a chứng minh theo hai góc trong cung phía bù nhau cũng được

1 tháng 10 2016

Dễ thấy MR // PQ

\(\Rightarrow\widehat{RMP}+\widehat{MPQ}=180^0\)

\(\Rightarrow\widehat{RMP}+50^0=180^0\)

\(\Rightarrow\widehat{RMP}=30^0\)

3 tháng 10 2016

Người ta kiu tính NMP và NRx mà bạn. Bạn làm sai đề rùi 

3 tháng 10 2016

Có: \(\widehat{BAD}+\widehat{ADC}=180\)

=> AB//CD ( cặp góc trong cùng phía bù nhau)

b) Có: AB//CD(cmt) 

Mà: AB \(\perp\) BC (gt)

=> CD\(\perp\) BC

3 tháng 10 2016

Giải:
a) Ta thấy \(\widehat{BAD}+\widehat{ADC}=180^o\) và 2 góc này ở vị trí trong cùng phía nên suy ra AB // CD

b) Vì AB // CD, AB _|_ BC nên suy ra BC _|_ CD

Vậy a) AB // CD

        b) BC _|_ CD

21 tháng 9 2016

 

B A x C y z

 

Kẻ Bz // Ax

     Bz // Cy

ta có Ax // Bz//Cy=>Ax//Cy (đpcm)

21 tháng 9 2016

Ta có hình vẽ:

A x y y y B z z C

Kẻ tia Bz nằm trong góc ABC sao cho Ax // Bz

Ta có: BAx + ABz = 180o (trong cùng phía) 

ABz + CBz = ABC

Lại có: BAx + ABC + BCy = 360o (gt) 

=> BAx + ABz + CBz + BCy = 360o

=> 180o + CBz + BCy = 360o

=> CBz + BCy = 360o - 180o

=> CBz + BCy = 180o

Mà CBz và BCy là 2 góc trong cùng phía

=> Bz // Cy

Mà Ax // Bz

=> Bz // Cy (đpcm)

 

19 tháng 12 2016

Khá dễ ==

 

25 tháng 12 2016

Bạn có thể giải giùm mình được không?

 

12 tháng 5 2017

Gọi I là giao điểm của AE và BC

Dễ thấy MA = MB = MC = ME

=> ∆AME cân

=> góc MAE = góc MEA

=> ∆ AMC cân

=> góc MAC = góc MCA

Mà ta có:

góc MEI + góc MIE = 90°

=> góc MAI + góc MIE = 90°

=> góc MAI + góc BIA = 90°

=> góc MAI + góc IAC + góc ACI = 90°

=> góc MAI + góc MAI + góc MAC + góc ACM = 90°

=> 2góc MAI + 2góc MAC = 90°

=> 2góc IAC = 90°

=> góc IAC = 45°

=> AE là phân giác của góc BAC

12 tháng 5 2017

Xét tam giác BME và tam giác CME có:

EM: cạnh chung.

MB = MC (gt)

góc BME = góc CME = 90 độ

suy ra: tam giác BME = tam giác CME ( cgv-cgv)

Suy ra : EB=EC.

Nên: E thuộc tia phân giác của góc A.

Vậy: AE là TPG của góc BAC

23 tháng 10 2017

bài giải

21 tháng 9 2016

Giải:

a) Ta có: AB // CD, CD _|_ a 

\(\Rightarrow\) AB _|_ a

\(\Rightarrow\widehat{A}=90^o\)

b) Vì AB // CD nên:

\(\widehat{C_1}=\widehat{B_4}=61^o\) ( đồng vị )

\(\Rightarrow\widehat{B_4}=\widehat{B_2}=61^o\) ( đối đỉnh )

\(\Rightarrow\widehat{B_1}+\widehat{B_2}=180^o\) ( kề bù )

Mà \(\widehat{B_2}=61^o\Rightarrow\widehat{B_1}=119^o\)

\(\Rightarrow\widehat{B_1}=\widehat{C_2}=161^o\) ( đồng vị )

Vậy a) \(\widehat{A}=90^o\)

        b) \(\widehat{B_2}=61^o,\widehat{B_1}=119^o,\widehat{C_2}=119^o\)

21 tháng 9 2016

Hình vẽ có rồi nha!!!!!!

a) Vì AB // CD (gt)

\(\Rightarrow\)\(\widehat{D} = \widehat{A}\) (so le trong)

mà \(\widehat{D} = 90^0\) (gt)

\(\Rightarrow\)\(\widehat{A} = 90^0\)

b) Ta có:

\(\widehat{C1} + \widehat{C2} = 180^0\) (kề bù)

\(61^0+ \widehat{C2} = 180^0 (\widehat{C1} = 61^0(gt))\)

\(\widehat{C2} = 119^0\)

Vì AB // CD (gt)

\(\Rightarrow\) \(\widehat{C2} = \widehat{B1} = 119^0\) (đồng vị)

\(\widehat{B2} = \widehat{C1} = 61^0\) (so le ngoài)

4 tháng 6 2020

a) △ABC có : Hai đường cao BE và AD mà 2 đường này cùng cắt nhau tại điểm I ⇒ I là trực tâm

⇒ CI là đường cao còn lại ⇒ CI ⊥ AB

b) Xét △BEC có : góc EBC + gócBEC + góc BCE = \(180^0\)( định lí tổng ba góc )

⇒ góc EBC = \(180^0\) - góc BEC - góc BCE = \(180^0\)- \(90^0\)-\(40^0\)= \(50^0\)

Lại xét △BID có : góc BID + góc IBD + góc BDI = \(180^0\)

⇒ góc BID = \(180^0\) - \(90^0\) - \(50^0\) = \(40^0\)

Có góc BID + góc DIE = \(180^0\)( 2 góc kề bù )

⇒ góc DIE = \(180^0\) - góc BID = \(180^0-40^0\)= \(140^0\)