Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Vẽ tia đối của AD là AO
Ta có:
\(\widehat{DAC}+\widehat{CAO}=180^0\) (Hai góc kề bù)
\(\Leftrightarrow140^0+\widehat{CAO}=180^0\)
\(\Leftrightarrow\widehat{CAO}=40^0\)
\(\Leftrightarrow\widehat{CAO}=\widehat{C}\left(=40^0\right)\)
\(\Leftrightarrow AD//CF\) (Vì có hai góc so le trong bằng nhau)
b) Ta có:
\(\widehat{CAO}+\widehat{BAO}=\widehat{BAC}\)
\(\Leftrightarrow40^0+\widehat{BAO}=90^0\)
\(\Leftrightarrow\widehat{BAO}=50^0\)
\(\Leftrightarrow\widehat{BAO}=\widehat{B}\left(=50^0\right)\)
\(\Leftrightarrow AD//BE\) (Vì có hai góc so le trong bằng nhau)
Vậy ...
Câu a chứng minh theo hai góc trong cung phía bù nhau cũng được
Dễ thấy MR // PQ
\(\Rightarrow\widehat{RMP}+\widehat{MPQ}=180^0\)
\(\Rightarrow\widehat{RMP}+50^0=180^0\)
\(\Rightarrow\widehat{RMP}=30^0\)
Có: \(\widehat{BAD}+\widehat{ADC}=180\)
=> AB//CD ( cặp góc trong cùng phía bù nhau)
b) Có: AB//CD(cmt)
Mà: AB \(\perp\) BC (gt)
=> CD\(\perp\) BC
Giải:
a) Ta thấy \(\widehat{BAD}+\widehat{ADC}=180^o\) và 2 góc này ở vị trí trong cùng phía nên suy ra AB // CD
b) Vì AB // CD, AB _|_ BC nên suy ra BC _|_ CD
Vậy a) AB // CD
b) BC _|_ CD
B A x C y z
Kẻ Bz // Ax
Bz // Cy
ta có Ax // Bz//Cy=>Ax//Cy (đpcm)
Ta có hình vẽ:
A x y y y B z z C
Kẻ tia Bz nằm trong góc ABC sao cho Ax // Bz
Ta có: BAx + ABz = 180o (trong cùng phía)
ABz + CBz = ABC
Lại có: BAx + ABC + BCy = 360o (gt)
=> BAx + ABz + CBz + BCy = 360o
=> 180o + CBz + BCy = 360o
=> CBz + BCy = 360o - 180o
=> CBz + BCy = 180o
Mà CBz và BCy là 2 góc trong cùng phía
=> Bz // Cy
Mà Ax // Bz
=> Bz // Cy (đpcm)
Gọi I là giao điểm của AE và BC
Dễ thấy MA = MB = MC = ME
=> ∆AME cân
=> góc MAE = góc MEA
=> ∆ AMC cân
=> góc MAC = góc MCA
Mà ta có:
góc MEI + góc MIE = 90°
=> góc MAI + góc MIE = 90°
=> góc MAI + góc BIA = 90°
=> góc MAI + góc IAC + góc ACI = 90°
=> góc MAI + góc MAI + góc MAC + góc ACM = 90°
=> 2góc MAI + 2góc MAC = 90°
=> 2góc IAC = 90°
=> góc IAC = 45°
=> AE là phân giác của góc BAC
Xét tam giác BME và tam giác CME có:
EM: cạnh chung.
MB = MC (gt)
góc BME = góc CME = 90 độ
suy ra: tam giác BME = tam giác CME ( cgv-cgv)
Suy ra : EB=EC.
Nên: E thuộc tia phân giác của góc A.
Vậy: AE là TPG của góc BAC
Giải:
a) Ta có: AB // CD, CD _|_ a
\(\Rightarrow\) AB _|_ a
\(\Rightarrow\widehat{A}=90^o\)
b) Vì AB // CD nên:
\(\widehat{C_1}=\widehat{B_4}=61^o\) ( đồng vị )
\(\Rightarrow\widehat{B_4}=\widehat{B_2}=61^o\) ( đối đỉnh )
\(\Rightarrow\widehat{B_1}+\widehat{B_2}=180^o\) ( kề bù )
Mà \(\widehat{B_2}=61^o\Rightarrow\widehat{B_1}=119^o\)
\(\Rightarrow\widehat{B_1}=\widehat{C_2}=161^o\) ( đồng vị )
Vậy a) \(\widehat{A}=90^o\)
b) \(\widehat{B_2}=61^o,\widehat{B_1}=119^o,\widehat{C_2}=119^o\)
Hình vẽ có rồi nha!!!!!!
a) Vì AB // CD (gt)
\(\Rightarrow\)\(\widehat{D} = \widehat{A}\) (so le trong)
mà \(\widehat{D} = 90^0\) (gt)
\(\Rightarrow\)\(\widehat{A} = 90^0\)
b) Ta có:
\(\widehat{C1} + \widehat{C2} = 180^0\) (kề bù)
\(61^0+ \widehat{C2} = 180^0 (\widehat{C1} = 61^0(gt))\)
\(\widehat{C2} = 119^0\)
Vì AB // CD (gt)
\(\Rightarrow\) \(\widehat{C2} = \widehat{B1} = 119^0\) (đồng vị)
\(\widehat{B2} = \widehat{C1} = 61^0\) (so le ngoài)
a) △ABC có : Hai đường cao BE và AD mà 2 đường này cùng cắt nhau tại điểm I ⇒ I là trực tâm
⇒ CI là đường cao còn lại ⇒ CI ⊥ AB
b) Xét △BEC có : góc EBC + gócBEC + góc BCE = \(180^0\)( định lí tổng ba góc )
⇒ góc EBC = \(180^0\) - góc BEC - góc BCE = \(180^0\)- \(90^0\)-\(40^0\)= \(50^0\)
Lại xét △BID có : góc BID + góc IBD + góc BDI = \(180^0\)
⇒ góc BID = \(180^0\) - \(90^0\) - \(50^0\) = \(40^0\)
Có góc BID + góc DIE = \(180^0\)( 2 góc kề bù )
⇒ góc DIE = \(180^0\) - góc BID = \(180^0-40^0\)= \(140^0\)
F C A D B E 1 2 3 x
Kéo dài DA
Ta có:
\(\widehat{A3} + \widehat{C} = 140^O + 40^O = 180^O\)
mà 2 góc này nằm ở vị trí trong cùng phía
\(\Rightarrow\) CF // DA (dhnb)
\(\widehat{A3} + \widehat{A1} = 180^O\) (kề bù)
\(140^O + \widehat{A1} = 180^O (\widehat{A3} = 140^O(gt))\)
\(\widehat{A1} = 180^O - 140^O\)
\(\widehat{A1} = 40^O\)
\(\widehat{A1} + \widehat{A2} = \widehat{BAC}\) (Ax nằm giữa 2 tia AB và AC)
\(40^O + \widehat{A2} = 90^O (\widehat{A1} = 40^O(cmt); AB \perp AC (gt))\)
\(\widehat{A2} = 90^O - 40^O\)
\(\widehat{A2} = 50^O\)
\(\Rightarrow\)\(\widehat{A2} = \widehat{B} = 50^O\)
mà 2 góc này nằm ở vị trí so le trong.
\(\Rightarrow\) BE // DA (dhnb)
mà CF // DA (cmt)
\(\Rightarrow\) CF // BE (Định lí 3 trong bìa từ vuông góc đến song song)