Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1:
a2+b2+c2+42 = 2a+8b+10c
<=> a2-2a+1+b2 -8b+16+c2-10c+25=0
<=> (a-1)2+(b-4)2+(c-5)2=0
<=>a=1 và b=4 và c=5
=> a+b+c = 10
ta có 2(a2+b2)=5ab
<=> 2a2+2b2-5ab=0
<=> 2a2-4ab-ab+2b2=0
<=> 2a(a-2b)-b(a-2b)=0
<=> (a-2b)(2a-b)=0
<=> a=2b(thỏa mãn)
hoặc b=2a( loại vì a>b)
với a=2b =>P=5b/5b=1
Oh, giống tôi quá, bạn cũng thích sưu tầm danh ngôn tâm trạng à ?
bạn chỉ cần bình tĩnh ,khg nên căng thẳng suy ngĩ lại những việc mình làm sai và cố gắng sửa bằng cách làm thật tốt công việc đó
chọn cho mình nhé,mình nói có đúng khg các bạn
bn cần tự tin lên, đừng sa vào các thứ ko tốt cho sức khỏe, tập trung hok tập, phải độc lập lên,tao cho mik những thứ tốt đẹp nhất nhé!!! Cố lên tất cả mọi người đều tin bn
{\__ /}
* *
Lời giải:
Bài 1:
Áp dụng BĐT Cauchy-Schwarz dạng cộng mẫu:
( \(\frac{a_1^2}{x_1}+\frac{a_2^2}{x_2}+...+\frac{a_n^2}{x_n}\geq \frac{(a_1+a_2+...+a_n)^2}{x_1+x_2+...+x_n}\)- Bản chất chính là BĐT Cauchy-Schwarz thu gọn)
\(\text{VT}=\frac{a^{4030}}{a^{2014}(b+c-a)}+\frac{b^{4030}}{b^{2014}(a+c-b)}+\frac{c^{4030}}{c^{2014}(a+b-c)}\geq\frac{(a^{2015}+b^{2015}+c^{2015})^2}{a^{2014}(b+c)+b^{2014}(c+a)+c^{2014}(a+b)-(a^{2015}+b^{2015}+c^{2015})} \)
Giờ chỉ cần chứng minh \(a^{2014}(b+c)+b^{2014}(c+a)+c^{2014}(a+b)-(a^{2015}+b^{2015}+c^{2015})\leq a^{2015}+b^{2015}+c^{2015}\)
\(\Leftrightarrow (a-b)(a^{2014}-b^{2014})+(b-c)(b^{2014}-c^{2014})+(c-a)(c^{2014}-a^{2014})\geq 0\)
\(\Leftrightarrow (a-b)^2(a^{2013}+....+b^{2013})+(b-c)^2(b^{2013}+...+c^{2013})+(c-a)^2(c^{2013}+...+a^{2013})\geq 0\)
BĐT này luôn đúng với $a,b,c>0$
Do đó \(\text{VT}\geq \frac{a^{2015}+b^{2015}+c^{2015})^2}{a^{2015}+b^{2015}+c^{2015}}=a^{2015}+b^{2015}+c^{2015}\) ( đpcm)
Dấu $=$ xảy ra khi $a=b=c$
Bài 2:
Áp dụng BĐT Cauchy-Schwarz:
\(17\left ( a^2+\frac{1}{b^2} \right )=\left ( a^2+\frac{1}{b^2} \right )(1+4^2)\geq \left ( a+\frac{4}{b} \right )^2\)
\(\Rightarrow \sqrt{a^2+\frac{1}{b^2}}\geq \frac{a+\frac{4}{b}}{\sqrt{17}}\). Tương tự với các phân thức còn lại......
\(S\geq \frac{1}{\sqrt{17}}\left(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)\)
Áp dụng BĐT Cauchy-Schwarz dạng cộng mẫu:
\(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\geq \frac{36}{a+b+c}\Rightarrow S\geq \frac{1}{\sqrt{17}}\left(a+b+c+\frac{36}{a+b+c}\right)\)
Áp dụng BĐT Am-Gm: \(a+b+c+\frac{9}{4(a+b+c)}\geq 2\sqrt{\frac{9}{4}}=3\)
Mặt khác, vì $a+b+c\leq\frac{3}{2}$ nên \(\frac{135}{4(a+b+c)}\geq \frac{45}{2}\)
\(\Rightarrow S\geq \frac{51}{2\sqrt{17}}=\frac{3\sqrt{17}}{2}\)
Vậy \(S_{\min}=\frac{3\sqrt{17}}{2}\Leftrightarrow (a,b,c)=\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right))\)
câu 14 : chọn đáp án \(B\) vì \(\left|\overrightarrow{b}\right|=\sqrt{\left(1\right)^2+\left(-1\right)^2}=\sqrt{2}\ne0\)
câu 18 : ta có tọa độ trọng tâm \(G\) của tam giác \(ABC\)
là \(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_G=\dfrac{2+3-7}{3}\\y_G=\dfrac{1-1+3}{3}\end{matrix}\right.\) \(\left\{{}\begin{matrix}x_G=\dfrac{-2}{3}\\y_G=1\end{matrix}\right.\)
vậy tọa độ trọng tâm \(G\) là \(G\left(\dfrac{-2}{3};1\right)\) \(\Rightarrow\) chọn đáp án \(B\)
câu 19 : đặt tọa độ của điểm \(D\) là \(D\left(x_D;y_D\right)\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(1;-7\right)\\\overrightarrow{DC}=\left(4-x_D;3-y_D\right)\end{matrix}\right.\)
ta có \(ABCD\) là hình bình hành \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{DC}\Leftrightarrow\left\{{}\begin{matrix}1=4-x_D\\-7=3-y_D\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_D=3\\y_D=10\end{matrix}\right.\)
vậy tọa độ điểm \(D\) là \(D\left(3;10\right)\) \(\Rightarrow\) chọn đáp án \(A\)
Q(x)=ax2+bx+c
Q(0)=c=1
Q(1)=a+b+c=6 => a+b=5 (1)
Q(2)=4a+2b+c=5 => 4a+2b=4
4a+2b=4
<=> 2(2a+b)=4
<=> 2a+b=2
=> b=2-2a
Thay vào (1)
=> a+b=5
=> a+2-2a=5
=> -a=3
=> a=-3
Mà a+b=5 => b= 8
mk lộn sửa lại nha
Ta có a//b
nên:
D^ = C2^ = 120o
C1^ + C2^ = 180o(kề bù)
C1^ = 180o - C2^ = 180o - 120o = 60o
VẬy góc C = 60o
Vì A_|_a
=> a//b
A_|_b
Ta có a//b nên
D^ = C^ = 120o( đồng vị)