Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}b+c=2a\\c+a=2b\\a+b=2c\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}=\dfrac{2a}{a}+\dfrac{2b}{b}+\dfrac{2c}{c}=2+2+2=6\)
P=
\(\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}=\dfrac{a}{b+c}.\left(\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\right):\left(\dfrac{a}{b+c}\right)=\left(\dfrac{b+c}{a}.\dfrac{a}{b+c}+\dfrac{c+a}{b}.\dfrac{a}{b+c}+\dfrac{a+b}{c}.\dfrac{a}{b+c}\right):\dfrac{a}{b+c}=\left(\dfrac{b+c}{a}.\dfrac{a}{b+c}+\dfrac{c+a}{b}.\dfrac{b}{c+a}+\dfrac{a+b}{c}.\dfrac{c}{a+b}\right):\dfrac{a}{b+c}=\left(1+1+1\right):\dfrac{a}{b+c}=3.\dfrac{b+c}{a}=\dfrac{3b+3c}{a}\)
Lời giải:
Bổ sung điều kiện $a,b,c$ không thể đồng thời bằng $0$
Từ đkđb suy ra:
\(\frac{6(10a-15b)}{2007.6}=\frac{15(6b-10c)}{15.2008}=\frac{10(15c-6a)}{10.2009}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{6(10a-15b)}{2007.6}=\frac{15(6b-10c)}{15.2008}=\frac{10(15c-6a)}{10.2009}=\frac{6(10a-15b)+15(6b-10c)+10(15c-6a)}{2007.6+15.2008+10.2009}=0\)
\(\Rightarrow 10a-15b=6b-10c=15c-6a=0\)
\(\Leftrightarrow 10a=15b; 6b=10c; 15c=6a\Leftrightarrow \frac{a}{15}=\frac{b}{10}=\frac{c}{6}\)
Đặt $\frac{a}{15}=\frac{b}{10}=\frac{c}{6}=k$ thì: $a=15k, b=10k, c=6k$
Vì $a,b,c$ không thể đồng thời bằng $0$ nên $k\neq 0$
Khi đó:
$P=\frac{15k.10k+10k.6k+15k.6k}{(15k)^2+(10k)^2+(6k)^2}$
$=\frac{300k^2}{361k^2}=\frac{300}{361}$
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}2a=b+c\\2b=a+c\\2c=a+b\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{\left(a+b\right)^3}{c^3}+\dfrac{\left(b+c\right)^3}{a^3}+\dfrac{\left(c+a\right)^3}{b^3}=\left(\dfrac{a+b}{c}\right)^3+\left(\dfrac{b+c}{a}\right)^3+\left(\dfrac{c+a}{b}\right)^3=\left(\dfrac{2c}{c}\right)^3+\left(\dfrac{2a}{a}\right)^3+\left(\dfrac{2b}{b}\right)^3=2^3+2^3+2^3=24\)
ta có \(\left(x-4\right)\left(6-x\right)\le\left(\frac{x-4+6-x}{2}\right)^2=1\) (bất đẳng thức cauchy)
mà \(\left|y+1\right|\ge0\Rightarrow\left|y+1\right|+2\ge2>1\)
Vậy phương trình trên vô nghiệm
x A B C y z
kẻ Bz // Cy và Ax
TA CÓ ^xAB trong cùng phía với ^ABz mà Ax // Bz => ^xAB + ^ABz = 180 => ^ABz = 115
có Cy // Bz mà yCB trong cùng phía CBz => yCB + CBz = 180 => ^CBz = 50
có ^CBz + ^ABC = ^ABz
=> ^ABC = 65