Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
Ta có: \(2\left(m^2+n^2\right)-1=2\left(m^2+n^2+2mn\right)-1-4mn=2\left(m+n\right)^2-1-4mn\)
\(=2\left[\left(m+n\right)^2-1\right]-4mn+1=2\left(m+n-1\right)\left(m+n+1\right)-4mn+1-4m^2-4m+4m^2+4m\)
\(=2\left(m+n+1\right)\left(-m+n-1\right)+\left(2m+1\right)^2\)
Suy ra \(\left(2m+1\right)^2⋮\left(m+n+1\right)\)mà \(m+n+1\)nguyên tố nên \(2m+1⋮m+n+1\)
do \(m,n\)nguyên dương suy ra \(2m+1\ge m+n+1\Leftrightarrow m\ge n\).
Một cách tương tự ta cũng suy ra được \(n\ge m\).
Do đó \(m=n\).
Khi đó \(mn=m^2\)là một số chính phương.
ta có \(\frac{p}{m-1}=\frac{m+n}{p}\Rightarrow P^2=\left(m-1\right)\left(m+n\right)\)
ta có \(Ư\left(P^2\right)\in\left\{1;p;p^2\right\}\)vì p là số nguyên tố
do \(m+n>m-1;m+n\ne m-1\Rightarrow m+n=p^2;m-1=1\)
\(\Rightarrow m=1+1=2\Rightarrow m+n=2+n=P^2\left(đpcm\right)\)
Ta thấy 1! + 2! = 3 \(⋮\) 3, còn từ 3! trở đi đương nhiên đều chia hết cho 3.
Do đó p2 + q2 + 5895 \(⋮\) 3. Mà 5895 \(⋮\) 3 nên p2 + q2 \(⋮\) 3 (1).
Lại có: p2 và q2 chia cho 3 dư 0 hoặc dư 1 do chúng đều là số chính phương (2).
Từ (1) và (2) \(\Rightarrow\) p2 \(⋮\) 3 và q2 \(⋮\) 3 \(\Rightarrow\) p \(⋮\) 3 và q \(⋮\) 3. Mà p và q là các snt nên p = q = 3 \(\Rightarrow\) 1! + 2! + 3! + ... + n! = 5913.
Vì n! < 5913 nên n < 8 \(\Rightarrow\) n \(\in\) {1; 2; 3; 4; 5; 6; 7}. Thử n với các số đó ta chỉ có n = 7 thỏa mãn.
Vậy n = 7.
thanks . nhưng chỉ có 1 số thôi sao ?