Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
. Ta có: P(1)= 0, P(3)= 0, P(5)= 0 => 1,3,5 là nghiệm của pt, nên P(x) chứa nhân tử: (x-1) ; (x-3) ; (x-5)
. Vì P(x) bậc 4, có hệ số bậc cao nhất là 1 nên P(x) có dạng: \(\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-a\right)\)
. \(Q=P\left(-2\right)+7P\left(-6\right)\) = \(\left(-2-1\right)\left(-2-3\right)\left(-2-5\right)\left(-2-a\right)+7\left(6-1\right)\left(6-3\right)\left(6-5\right)\left(6-a\right)\)
\(=210+105a+630-105a\) \(=840\)
. Vậy \(Q=840\)
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\)
\(\Leftrightarrow\frac{1}{1+a}=1-\frac{1}{1+b}+1-\frac{1}{1+c}\)
\(\Leftrightarrow\frac{1}{1+a}=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\) (BĐT Cosi)
Tương tự ta có \(\hept{\begin{cases}\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\\\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\end{cases}}\)
Nhân vế theo vế \(\Rightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\sqrt{\frac{a^2b^2c^2}{\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2}}=\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Rightarrow abc\le\frac{1}{8}\)
Dấu "=" xảy ra khi a=b=c=\(\frac{1}{2}\)
Nguồn:Hoàng Phương
Bài 2 : Phân tích đa thức thành nhân tử
a) \(8x^2-2\)
\(=2\left(4x^2-1\right)\)
\(=2.\left(2x-1\right)\left(2x+1\right)\)
b) \(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-3+y\right)\left(x-3-y\right)\)
1. Tính giá trị biểu thức :
\(Q=x^2-10x+1025\)
\(Q=\left(x^2-2.x.5+25\right)+1000\)
\(Q=\left(x-5\right)^2+1000\)
Thay x=1005 vào biểu thức trên ta có :
\(Q=\left(1005-5\right)^2+1000\)
\(Q=1000000+1000\)
\(Q=1001000\)
Bài 1:Biến đổi biểu thức sau thành tích các đa thức
16x^2(4x - y) - 8y^2(x + y)+xy (16x+8y)=64x3-16x2y-8xy2-8y3+16x2y+8xy2
=64x3-8y3=(4x)3-(2y)3=(4x-2y)(16x2+8xy+4y)
Bài 2: Tìm x biết
a) (x - 2)^3 -(x - 3)(x^2 + 3x + 9) + 6(x + 1)^2 = 15
<=>x3-6x2+12x-8-(x3-27)+6(x2+2x+1)=15
<=>x3-6x2+12x-8-x3+27+6x2+12x+6=15
<=>24x-25=15
<=>24x=-10
<=>x=-5/12
b) 6(x + 1)^2 - 2(x + 1) ^3 + 2(x - 1)(x^2 +x +1) = 1
<=>6(x2+2x+1)-2(x3+3x2+3x+1)+2(x3-1)=1
<=>6x2+12x+6-2x3-6x2-6x-2+2x3-2=1
<=>6x+2=1
<=>6x=-1
<=>x=-1/6
Bài 3: Tính giá trị biểu thức
D= (2x - 3)^2 - (4x - 6)(2x - 5) + (2x - 5)^2 với x = 99
D= (2x - 3)^2 - (4x - 6)(2x - 5) + (2x - 5)^2
=(2x - 3)^2 - 2(2x - 3)(2x - 5) + (2x - 5)^2
=[(2x-3)-(2x-5)]2
=(2x-3-2x+5)2
=22=4
=>D ko phụ thuộc vào giá trị của x nên
với x=99 D = 4
P(1) = 0 ; P(3) = 0 ; P(5) = 0 nên 1 ; 3 ; 5 lần lượt là nghiệm của phương trình nên
P(x) chứa nhân tử (x-1)(x-3)(x-5)
vì P(x) bậc 4 có hệ số bậc cao nhất là một nên P(x) có dạng
P(x) = (x-1)(x-3)(x-5)(x-a)
\Rightarrow Q(x) = P(-2) + 7P(6)
= (-2-1)(-2-3)(-2-5)(-2-a) + 7(6-1)(6-3)(6-5)(6-a)
= 210 + 105a + 7(90 - 15a)
= 210 + 105a + 630 - 105a
= 840
Cảm ơn nhiều nha!!!