K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2007}{2009}\)

\(\dfrac{2}{2}\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}\right)=\dfrac{2007}{2009}\)

\(2\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2007}{2009}\)

\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2007}{2009}:2\)

\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2007}{4018}\)

\(\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2007}{4018}\)

\(\dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{2007}{4018}\)

\(\dfrac{1}{x+1}=\dfrac{2009}{4018}-\dfrac{2007}{4018}\)

\(\dfrac{1}{x+1}=\dfrac{2}{4018}\)

\(\dfrac{1}{x+1}=\dfrac{1}{2009}\)

\(\Rightarrow x+1=2009\)

\(x=2009-1\)

\(x=2008\).

Vậy x = 2008 .

- Bạn học tốt nhé -...

17 tháng 3 2018

a/ \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+.......+\dfrac{1}{2^{10}}\)

\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.......+\dfrac{1}{2^9}\)

\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+......+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{10}}\right)\)

\(\Leftrightarrow A=1-\dfrac{1}{2^{10}}\)

b/ \(\dfrac{1}{5.8}+\dfrac{1}{8.11}+.......+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)

\(\Leftrightarrow3\left(\dfrac{1}{5.8}+\dfrac{1}{8.11}+......+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{101}{1540}.3\)

\(\Leftrightarrow\dfrac{3}{5.8}+\dfrac{3}{8.11}+......+\dfrac{3}{x\left(x+3\right)}=\dfrac{303}{1540}\)

\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+.....+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)

\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)

\(\Leftrightarrow\dfrac{1}{x+3}=\dfrac{1}{308}\)

\(\Leftrightarrow x+3=308\)

\(\Leftrightarrow x=305\)

Vậy ..

c/ \(1+\dfrac{1}{3}+\dfrac{1}{6}+........+\dfrac{1}{x\left(x+1\right):2}=1\dfrac{2007}{2009}\)

\(\dfrac{1}{2}\left(\dfrac{1}{3}+\dfrac{1}{6}+.......+\dfrac{1}{x\left(x+1\right):2}\right)=\dfrac{4016}{2009}.\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+......+\dfrac{1}{x\left(x+1\right)}=\dfrac{2008}{2009}\)

\(\Leftrightarrow\dfrac{1}{1.2}+\dfrac{1}{2.3}+......+\dfrac{1}{x\left(x+1\right)}=\dfrac{2008}{2009}\)

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2008}{2009}\)

\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2008}{2009}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2009}\)

\(\Leftrightarrow x+1=2009\)

\(\Leftrightarrow x=2008\)

Vậy ..

17 tháng 3 2018

bài 1:

A=\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)

ta thấy 2A=\(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^9}\)

=>2A-A=\(1-\dfrac{1}{2^{10}}=\dfrac{1023}{1024}\)

AH
Akai Haruma
Giáo viên
25 tháng 4 2018

Lời giải:

Ta có:

\(\frac{1}{x(x+1):2}=\frac{2}{x(x+1)}=2.\frac{(x+1)-x}{x(x+1)}=2\left(\frac{1}{x}-\frac{1}{x+1}\right)\)

Do đó:

\(\frac{1}{3}=\frac{1}{2.3:2}=2\left(\frac{1}{2}-\frac{1}{3}\right)\)

\(\frac{1}{6}=\frac{1}{3.4:2}=2\left(\frac{1}{3}-\frac{1}{4}\right)\)

\(\frac{1}{10}=\frac{1}{4.5:2}=2\left(\frac{1}{4}-\frac{1}{5}\right)\)

.......

\(\frac{1}{x(x+1):2}=2\left(\frac{1}{x}-\frac{1}{x+1}\right)\)

Cộng theo vế:

\(\text{VT}=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{x}-\frac{1}{x+1}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{x+1}\right)\) \(=1-\frac{2}{x+1}\)

Mà \(\text{VT}=\frac{2009}{2011}\Rightarrow 1-\frac{2}{x+1}=\frac{2009}{2011}\Rightarrow x=2010\)

25 tháng 4 2018

Mình có cách giải khác:

\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x\left(x+1\right):2}=\dfrac{2009}{2011}\)

=\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2009}{4022}\)

=\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2009}{4022}\)

=\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2009}{4022}_{ }\)

=\(\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2009}{4022}\)

\(\dfrac{1}{x+1}=\dfrac{1}{2011}\)

\(x=2011-1=2010\)

Bài 1:

a: \(\Leftrightarrow\dfrac{2}{3}\cdot\dfrac{6+9-4}{12}< =\dfrac{x}{18}< =\dfrac{7}{13}\cdot\dfrac{3-1}{6}\)

\(\Leftrightarrow\dfrac{22}{36}< =\dfrac{x}{18}< =\dfrac{14}{78}=\dfrac{7}{39}\)

\(\Leftrightarrow\dfrac{11}{9}< =\dfrac{x}{9}< =\dfrac{7}{13}\)

=>143<=x<=63

hay \(x\in\varnothing\)

b: \(\Leftrightarrow\dfrac{31\cdot9-26\cdot4}{180}\cdot\dfrac{-36}{35}< x< \dfrac{153+64+56}{168}\cdot\dfrac{8}{13}\)

\(\Leftrightarrow-1< x< 1\)

=>x=0

Bài 1: Thực hiện các phép tính sau ( Tính nhanh nếu có thể) a) \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\) b) \(\dfrac{3}{1.3}+\dfrac{3}{3.5}+\dfrac{3}{5.7}+...+\dfrac{3}{49.51}\) Bài 2: Tìm x biết: a) \(\dfrac{2}{3}.x+\dfrac{1}{4}=\dfrac{7}{12}\) b) \(\dfrac{1}{2}+\dfrac{1}{3}:2.x=-1\) c) (3.x-2)\(^2=\dfrac{16}{25}\) d) (2 . x - 3).(6 - 4 . x)=0 Bài 3 Một trường THCS có 3020 học sinh. Số học sinh khối 6 bằng 0,3 số học...
Đọc tiếp

Bài 1: Thực hiện các phép tính sau ( Tính nhanh nếu có thể)

a) \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)

b) \(\dfrac{3}{1.3}+\dfrac{3}{3.5}+\dfrac{3}{5.7}+...+\dfrac{3}{49.51}\)

Bài 2: Tìm x biết:

a) \(\dfrac{2}{3}.x+\dfrac{1}{4}=\dfrac{7}{12}\)

b) \(\dfrac{1}{2}+\dfrac{1}{3}:2.x=-1\)

c) (3.x-2)\(^2=\dfrac{16}{25}\)

d) (2 . x - 3).(6 - 4 . x)=0

Bài 3 Một trường THCS có 3020 học sinh. Số học sinh khối 6 bằng 0,3 số học sinh toàn trường. Số học sinh khối 9 bằng 20% số học sinh toàn trường. Số học sinh khối 8 bằng \(\dfrac{1}{2}\) số học sinh khối 6 và khối 9. Tính số học sinh khối 7?

Bài 4: Tính nhanh: \(\dfrac{3}{3.5}+\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{97.99}\)

Bài 5: Đoạn đương bộ đi từ Đà Nẵng đến Huế dài 108 km. Một xe máy xuất phát từ Đà Nẵng đã đi được \(\dfrac{5}{6}\) quãng đường. Hỏi xe máy còn cách Huế bao nhiêu km?

Bài 6: Tìm số tự nhiên x biết rằng:

\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x.\left(x\right)+1}=\dfrac{2007}{2009}\)

HELP ME! Mk đang cần gấp,ai nhanh, đầy đủ mk tick cho!

5
30 tháng 4 2017

Bài 1:

a)=2.( \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+......+\dfrac{1}{97}-\dfrac{1}{99}\)

=2. (1/3-1/99)

=2. (33/99-1/99)

=2. 32/99

=64/99

b) tương tự như trên.

30 tháng 4 2017

Bài 1 :

a) \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)

\(=2\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{97.99}\right)\)

\(=2\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)

\(=2\left(\dfrac{1}{3}-\dfrac{1}{99}\right)\)

\(=2\left(\dfrac{33}{99}-\dfrac{1}{99}\right)\)

\(=2.\dfrac{32}{99}\)

\(=\dfrac{2.32}{99}\)

\(=\dfrac{64}{99}\)

b) \(\dfrac{3}{1.3}+\dfrac{3}{3.5}+\dfrac{3}{5.7}+...+\dfrac{3}{49.51}\)

\(=2\left(\dfrac{3}{1.3}+\dfrac{3}{3.5}+\dfrac{3}{5.7}+...+\dfrac{3}{49.51}\right)\)

\(=3\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{49.51}\right)\)

\(=3\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)

\(=3\left(1-\dfrac{1}{51}\right)\)

\(=3.\dfrac{50}{51}\)

\(=\dfrac{3.50}{51}\)

\(=\dfrac{1.50}{17}\)

\(=\dfrac{50}{17}\)

Bài 1: 

a: \(\Leftrightarrow\left|x+\dfrac{4}{15}\right|=-2.15+3.75=\dfrac{8}{5}\)

=>x+4/15=8/5 hoặc x+4/15=-8/5

=>x=4/3 hoặc x=-28/15

b: \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{5}{3}x=-\dfrac{1}{6}\\\dfrac{5}{3}x=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{6}:\dfrac{5}{3}=\dfrac{-3}{30}=\dfrac{-1}{10}\\x=\dfrac{1}{10}\end{matrix}\right.\)

c: \(\Leftrightarrow\left|x-1\right|-1=1\)

=>|x-1|=2

=>x-1=2 hoặc x-1=-2

=>x=3 hoặc x=-1

Bài 2: 

b: \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{9}{25}\)

Bài 3: 

a: \(A=\left|x+\dfrac{15}{19}\right|-1>=-1\)

Dấu '=' xảy ra khi x=-15/19

b: \(\left|x-\dfrac{4}{7}\right|+\dfrac{1}{2}>=\dfrac{1}{2}\)

Dấu '=' xảy ra khi x=4/7

 

25 tháng 4 2017

Bài 1: a) Ta có : \(\dfrac{-3}{x}=\dfrac{x}{-27}\Leftrightarrow\left(-3\right).\left(-27\right)=x.x\Leftrightarrow81=x^2\Leftrightarrow9^2=x^2\Leftrightarrow x=9\)

b) Do \(\dfrac{2}{3}\) của x là -150 nên x là: (-150) : \(\dfrac{2}{3}\) = -225

c) \(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{4}{9}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{x}-\dfrac{1}{x+2}=\dfrac{4}{9}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+2}=\dfrac{4}{9}\)

\(\Leftrightarrow\dfrac{1}{x+2}=\dfrac{1}{2}-\dfrac{4}{9}\)

\(\Leftrightarrow\dfrac{1}{x+2}=\dfrac{1}{18}\)

\(\Leftrightarrow x+2=18\)

\(\Leftrightarrow x=16\)

Bài 2:

\(A=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{999}\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)

\(A=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{999}\right)\left(\dfrac{1}{6}-\dfrac{1}{6}\right)\)

\(A=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{999}\right).0\)

\(A=0\)

17 tháng 4 2017

Bài 1:

\(a,\left(x+\dfrac{1}{4}-\dfrac{1}{3}\right):\left(2-\dfrac{1}{6}-\dfrac{1}{4}\right)=\dfrac{7}{46}\)

\(\left(x+\dfrac{1}{4}-\dfrac{1}{3}\right):\left(\dfrac{24+2-3}{12}\right)=\dfrac{7}{46}\)

\(\left(x+\dfrac{1}{4}-\dfrac{1}{3}\right):\dfrac{23}{12}=\dfrac{7}{46}\)

\(x+\dfrac{1}{4}-\dfrac{1}{3}=\dfrac{7}{46}.\dfrac{23}{12}\)

\(x+\dfrac{1}{4}-\dfrac{1}{3}=\dfrac{7}{24}\)

\(x+\dfrac{1}{4}=\dfrac{7}{24}+\dfrac{1}{3}\)

\(x+\dfrac{1}{4}=\dfrac{5}{8}\)

\(x=\dfrac{5}{8}-\dfrac{1}{4}=\dfrac{3}{8}\)

Vậy \(x=\dfrac{3}{8}\)

\(b,\dfrac{13}{15}-\left(\dfrac{13}{21}+x\right).\dfrac{7}{12}=\dfrac{7}{10}\)

\(\left(\dfrac{13}{21}+x\right).\dfrac{7}{12}=\dfrac{13}{15}-\dfrac{7}{10}\)

\(\left(\dfrac{13}{21}+x\right).\dfrac{7}{12}=\dfrac{1}{6}\)

\(\dfrac{13}{21}+x=\dfrac{1}{6}:\dfrac{7}{12}\)

\(\dfrac{13}{21}+x=\dfrac{2}{7}\)

\(x=\dfrac{2}{7}-\dfrac{13}{21}=-\dfrac{1}{3}\)

Vậy \(x=-\dfrac{1}{3}\)

Bài 2:

\(a,\left(2\dfrac{5}{6}+1\dfrac{4}{9}\right):\left(10\dfrac{1}{12}-9\dfrac{1}{2}\right)\)

\(=\left(\dfrac{17}{6}+\dfrac{13}{9}\right):\left(\dfrac{121}{12}-\dfrac{19}{2}\right)\)

\(=\dfrac{77}{18}:\dfrac{7}{12}\)

\(=\dfrac{22}{3}\)

\(b,1\dfrac{5}{18}-\dfrac{5}{18}.\left(\dfrac{1}{15}+1\dfrac{1}{12}\right)\)

\(=\dfrac{23}{18}-\dfrac{5}{18}.\dfrac{69}{60}\)

\(=\dfrac{23}{18}-\dfrac{23}{72}\)

\(=\dfrac{23}{24}\)

\(c,-\dfrac{1}{7}.\left(9\dfrac{1}{2}-8,75\right):\dfrac{2}{7}+0,625:1\dfrac{2}{3}\)

\(=\dfrac{-1}{7}.\dfrac{3}{4}:\dfrac{2}{7}+\dfrac{5}{8}:\dfrac{5}{3}\)

\(=-\dfrac{3}{8}+\dfrac{5}{8}:\dfrac{5}{3}\)

\(=-\dfrac{3}{8}+\dfrac{3}{8}\)

\(=\dfrac{0}{8}=0\)

Chúc bạn học tốtbanhquaok

18 tháng 4 2017

ukm

bn có thể giải cho mik mấy bài mà mik vừa đăng đc ko mik đang cần gấp

20 tháng 4 2018

2. \(\left(2,7x-1\dfrac{1}{2}x\right):\dfrac{2}{7}=\dfrac{-21}{4}\)

\(\Leftrightarrow x.\left(\dfrac{27}{10}+\dfrac{-3}{2}\right)=\dfrac{-21}{4}.\dfrac{2}{7}\)

\(\Leftrightarrow x.\left(\dfrac{27}{10}+\dfrac{-15}{10}\right)=\dfrac{-3}{2}\)

\(\Leftrightarrow x.\dfrac{6}{5}=\dfrac{-3}{2}\)

\(\Leftrightarrow x=\dfrac{-3}{2}:\dfrac{6}{5}\)

\(\Leftrightarrow x=\dfrac{-3}{2}.\dfrac{5}{6}\)

\(\Leftrightarrow x=\dfrac{-5}{4}\)

20 tháng 4 2018

3.\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{3}{4}=1\\2x-\dfrac{3}{4}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1+\dfrac{3}{4}\\2x=\left(-1\right)+\dfrac{3}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{7}{3}\\2x=\dfrac{-7}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}.\dfrac{1}{2}\\x=\dfrac{-7}{3}.\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{6}\\x=\dfrac{-7}{6}\end{matrix}\right.\)

vậy \(x\in\left\{\dfrac{7}{6};\dfrac{-7}{6}\right\}\)

Câu 3: 

a: \(A=-\left|x-10\right|+2018< =2018\)

Dấu '=' xảy ra khi x=10

\(B=-\left(x+2\right)^2+1999< =1999\)

Dấu '=' xảy ra khi x=-2

b: \(A=\left(2x-8\right)^2+3>=3\)

Dấu '=' xảy ra khi x=4

\(B=\left|x^2-25\right|-2017>=-2017\)

Dấu '=' xảy ra khi x=5 hoặc x=-5