Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lâu rồi k giải toán, giờ trở lại vs Toán thân iu
Ta có hình vẽ:
A B C D M I K
a/ Xét tam giác ABD và tam giác CMD có:
AD = DC (vì D là trung điểm AC)
góc ADB = góc CDM (đối đỉnh)
DB = DM (GT)
Vậy tam giác ABD = tam giác CMD (c.g.c)
=> AB = CM (2 cạnh tương ứng)
Ta có: tam giác ABD = tam giác CMD
=> góc BAC = góc MCA (2 góc tương ứng)
b/ Xét tam giác AMD và BCD có:
AD = DC (vì D là trung điểm AC)
góc ADM = góc BDC (đối đỉnh)
DM = DB (GT)
Vậy tam giác AMD = tam giác BCD (c.g.c)
=> góc MAD = góc DCB (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AM // BC (đpcm)
c/ Xét tam giác ABC và tam giác AMC có:
AC: cạnh chung
AB = CM (do tam giác ABD = tam giác CMD)
AM = BC (do tam giác AMD = tam giác BCD)
=> tam giác ABC = tam giác AMC (c.c.c)
d/ Ta có: AB = CM (câu a)
Mà I là trung điểm AB
và K là trung điểm CM
=> AI = IB = MK = KC
Xét tam giác IAD và tam giác KCD có:
AI = CK (đã chứng minh trên)
góc BAC = góc MCA (câu a)
AD = DC (vì D là trung điểm AC)
=> tam giác IAD = tam giác KCD (c.g.c)
=> góc IDA = góc KDC (2 góc tương ứng)
Ta có: \(\widehat{ADM}\)+\(\widehat{MDK}\)+\(\widehat{KDC}\)=1800
=> góc ADM + góc MDK + góc IDA = 1800
=> góc IDK = 1800
hay K,D,I thẳng hàng
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
Lời giải:
a,Vì M là trung điểm AC nên MA=MC
MB=MD (gt)=>M là trung điểm của BD
Góc AMB=góc DMC (đối đỉnh)
=> tam giác ABM=tam giác CDM(c.g.c) (1)
b,vì tam giác ABC nhọn(gt)
=>góc B ,góc C nhọn
M là trung điểm của AC và BD
=>M là giao điểm 2 đường thẳng AC và BD
Từ. (1) => góc ABM=góc CDM (so le)
Góc MCD= góc BAM (so le)
Cạnh AB=CD
=>Tứ giác ABCD là hình bình hành
=>AB//CD
c,vì H và K là 2 điểm thuộc BD
mà BH =DK (gt)
Từ A kẻ AH_|_ BD; từ C kẻ CK_|_BD
=> AH=CK( vì tam giác ABD=tam giác BCD co BD là cạnh chung)
=>AH//CK
=>góc AKH=góc CHK(2 góc ở vị trí so le)
=> tam giác AHK=tam giác CKH(c.g.c)
=>AK=CH