Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>10x=3(5-3x)
=>10x=15-9x
=>19x=15
=>x=15/19
b: =>\(\dfrac{x\left(x-4\right)+x^2-1}{x\left(x+1\right)}=2\)
=>2x^2+2x=x^2-4x+x^2-1=2x^2-4x-1
=>2x=-4x-1
=>6x=-1
=>x=-1/6
c:=>x(x+2)-x+2=2
=>x^2+2x-x=0
=>x(x+1)=0
=>x=0(loại) hoặc x=-1(nhận)
d: =>x+1+3x=2
=>4x=1
=>x=1/4
e: =>x(x+1)+x(x-3)=2x
=>x^2+x+x^2-3x=2x
=>2x^2-4x=0
=>x=0(nhận) hoặc x=2(nhận)
f: =>2x+6-4x+12=5
=>-2x=-13
=>x=13/2
a) ĐKXĐ: \(x\ne0\)
Ta có: \(\dfrac{1}{3x}+\dfrac{1}{2x}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{4}{12x}+\dfrac{6}{12x}=\dfrac{3x}{12x}\)
Suy ra: \(3x=10\)
\(\Leftrightarrow x=\dfrac{10}{3}\)(thỏa ĐK)
Vậy: \(S=\left\{\dfrac{10}{3}\right\}\)
b) ĐKXĐ: \(x\ne0\)
Ta có: \(\dfrac{3}{8x}-\dfrac{1}{2x}=\dfrac{1}{x^2}\)
\(\Leftrightarrow\dfrac{3x}{8x^2}-\dfrac{4x}{8x^2}=\dfrac{8}{8x^2}\)
Suy ra: \(3x-4x=8\)
\(\Leftrightarrow-x=8\)
hay x=-8(thỏa ĐK)
Vậy: S={-8}
c)ĐKXĐ: \(x\ne0\)
Ta có: \(\dfrac{1}{2x}+\dfrac{3}{4x}=\dfrac{5}{2x^2}\)
\(\Leftrightarrow\dfrac{2x}{4x^2}+\dfrac{3x}{4x^2}=\dfrac{10}{4x^2}\)
Suy ra: 2x+3x=10
\(\Leftrightarrow5x=10\)
hay x=2(thỏa ĐK)
Vậy: S={2}
d, \(\dfrac{2a}{x+a}=1\) (x \(\ne\) -a)
\(\Leftrightarrow\) \(\dfrac{2a}{x+a}-\dfrac{x+a}{x+a}=0\)
\(\Leftrightarrow\) \(\dfrac{a-x}{x+a}=0\)
\(\Leftrightarrow\) a - x = 0 (x + a \(\ne\) 0)
\(\Leftrightarrow\) x = a (TM)
Vậy S = {a}
Chúc bn học tốt!
a: =>3,6-1,7x=2,3-1,4-4=0,9-4=-3,1
=>1,7x=6,7
hay x=67/17
b: \(\Leftrightarrow30\left(5x+4\right)-15\left(3x+5\right)=24\left(4x+9\right)-40\left(x-9\right)\)
=>150x+120-45x-75=96x+216-40x+360
=>105x+45=56x+576
=>49x=531
hay x=531/49
a) Phương trình \(7x + \dfrac{4}{7} = 0\) là phương trình bậc nhất một ẩn vì có dạng \(ax + b = 0\) với \(a\) và \(b\) là các hệ số đã cho và \(a \ne 0\), \(x\) là ẩn số.
Khi đó, \(a = 7;b = \dfrac{4}{7}\).
b) \(\dfrac{3}{2}y - 5 = 4\)
\(\dfrac{3}{2}y - 5 - 4 = 0\)
\(\dfrac{3}{2}y - 9 = 0\)
Phương trình \(\dfrac{3}{2}y - 9 = 0\) là phương trình bậc nhất một ẩn vì có dạng \(ay + b = 0\) với \(a\) và \(b\) là các hệ số đã cho và \(a \ne 0\), \(y\) là ẩn số.
Khi đó, \(a = \dfrac{3}{2};b = - 9\)
c) Phương trình \(0t + 6 = 0\) không là phương trình bậc nhất một ẩn.
Mặc dù phương trình đã cho có dạng \(at + b = 0\) với \(a\) và \(b\) là các hệ số đã cho nhưng \(a = 0\).
d) Phương trình \({x^2} + 3 = 0\) không là phương trình bậc nhất một ẩn vì không có dạng \(ax + b = 0\) với \(a\) và \(b\) là các hệ số đã cho và \(a \ne 0\), \(x\) là ẩn số (do có \({x^2}\)).
a: \(\Leftrightarrow7\left(7-3x\right)+12\left(5x+2\right)=84\left(x+13\right)\)
\(\Leftrightarrow49-21x+60x+24=84x+1092\)
\(\Leftrightarrow39x-84x=1092-73\)
=>-45x=1019
hay x=-1019/45
b: \(\Leftrightarrow21\left(x+3\right)-14=4\left(5x+9\right)-7\left(7x-9\right)\)
=>21x+63-14=20x+36-49x+63
=>21x+49=-29x+99
=>50x=50
hay x=1
c: \(\Leftrightarrow7\left(2x+1\right)-3\left(5x+2\right)=21x+63\)
=>14x+7-15x-6-21x-63=0
=>-22x-64=0
hay x=-32/11
d: \(\Leftrightarrow35\left(2x-3\right)-15\left(2x+3\right)=21\left(4x+3\right)-17\cdot105\)
=>70x-105-30x-45=84x+63-1785
=>40x-150-84x+1722=0
=>-44x+1572=0
hay x=393/11
a) \(\dfrac{x^2+5}{25-x^2}=\dfrac{3}{x+5}+\dfrac{x}{x-5}\)
\(\Leftrightarrow\dfrac{x^2+5}{5^2-x^2}=\dfrac{3\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}+\dfrac{x\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}\)
\(\Leftrightarrow\dfrac{x^2+5}{5^2-x^2}=\dfrac{3\left(x-5\right)+x\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}\)
\(\Leftrightarrow\dfrac{-\left(x^2+5\right)}{x^2-5^2}=\dfrac{3x-15+x^2+5x}{x^2-5^2}\)
\(\Leftrightarrow\dfrac{-\left(x^2+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{8x-15+x^2}{\left(x-5\right)\left(x+5\right)}\)
\(\Leftrightarrow-\left(x^2+5\right).\left(x-5\right)\left(x+5\right)=\left(x-5\right)\left(x+5\right)\left(8x-15+x^2\right)\)
\(\Leftrightarrow-\left(x^2+5\right)\left(x-5\right)\left(x+5\right)-\left(x-5\right)\left(x+5\right)\left(8x-15+x^2\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+5\right)\left(-x^2-5+8x-15+x^2\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+5\right)\left(-20+8x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+5=0\\-20x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\\x=\dfrac{2}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là S={5,-5,2/5}
Mình khuyên bạn thế này :
Bạn nên tách những câu hỏi ra
Như vậy các bạn sẽ dễ giúp
Và cũng có nhiều bạn giúp hơn !
Bài 1.
a) ( x - 3 )( x + 7 ) = 0
<=> x - 3 = 0 hoặc x + 7 = 0
<=> x = 3 hoặc x = -7
Vậy S = { 3 ; -7 }
b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0
<=> ( x - 2 )( x - 2 + x - 3 ) = 0
<=> ( x - 2 )( 2x - 5 ) = 0
<=> x - 2 = 0 hoặc 2x - 5 = 0
<=> x = 2 hoặc x = 5/2
Vậy S = { 2 ; 5/2 }
c) x2 - 5x + 6 = 0
<=> x2 - 2x - 3x + 6 = 0
<=> x( x - 2 ) - 3( x - 2 ) = 0
<=> ( x - 2 )( x - 3 ) = 0
<=> x - 2 = 0 hoặc x - 3 = 0
<=> x = 2 hoặc x = 3
ĐKXĐ:\(x\ne-3\)
\(-\dfrac{4}{3+x}+5=\dfrac{4x+7}{x+3}\\ \Leftrightarrow\dfrac{-4}{x+3}+\dfrac{5\left(x+3\right)}{x+3}-\dfrac{4x+7}{x+3}=0\\ \Leftrightarrow\dfrac{-4+5x+15-4x-7}{x+3}=0\\ \Rightarrow x+4=0\\ \Leftrightarrow x=-4\left(tm\right)\)
giúp mk bài này ạ