Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
a) Vì là tam giác cân nên 2 góc ở đáy bằng nhau, góc ở đáy là : \(\left(180^0-50^0\right)\div2=65^0\)
b) Vì \(\Delta ABC\) đều \(\Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=180^0\div3=60^0\).Có \(BM=CM=1,5\left(cm\right)\)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\Rightarrow\widehat{AMC}=\widehat{AMB}\). Mà 2 góc kề bù \(\Rightarrow\widehat{AMC}=\widehat{AMB}=90^0\)
Vì \(\Rightarrow\widehat{AMB}=90^0\Rightarrow\Delta AMB\) có \(AM^2=AB^2+BM^2\). Thay số. ta có :
\\(AM^2=3^2+1,5^2=9+2,25=11,25\Rightarrow AM=\sqrt{11,25}\)
c) Vì là tam giác cân nên 2 góc ở đáy bằng nhau, góc ở đỉnh là : \(180^0-\left(50^0.2\right)=80^0\)
b) \(AM^2+MB^2=AB^2\)
\(\Rightarrow AM=\sqrt{AB^2-MB^2}=\sqrt{3^2-1,5^2}=\sqrt{6,75}\)
học lại đinhl ý pytago nha Vũ Cao Minh⁀ᶦᵈᵒᶫ ( Cool Team )
a: \(\widehat{AMB}=90^0;\widehat{BAM}=30^0;\widehat{ABM}=60^0\)
b: Xét ΔAMB vuông tại M có \(\sin60^0=\dfrac{AM}{AB}=\dfrac{3}{AB}\)
=>\(AB=BC=AC=2\sqrt{3}\left(cm\right)\)
anh ơi anh làm cái gì vậy? Đây là bài lớp 7 nên ko có sin hay \(2\sqrt{3}\) ở đây đou anh nhé