Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo tính chất một điểm nằm trên đường trung trực thì cách đều 2 đầu mút
=> AD = AH và AH = AE
Xét tam giác BDA và tam giác BHA có :
BA chung
BD = BH (theo tính chất nêu trên) => tam giác BDA = tam giác BHA (1)
AD = AH
Xét tam giác AHC và tam giác AEC có :
AC chung
AH = AE => tam giác AHC = tam giác AEC (2)
CH = CE (như tính chất nêu trên)
Từ (1)
=> \(AD⊥BD\) và \(\widehat{DAB}=\widehat{HAB}\)
Từ (2) ta cũng có :
\(AE⊥CE\) và \(\widehat{HAC}=\widehat{EAC}\)
Ta lại có :
\(\widehat{HAB}+\widehat{HAC}=90^0\)
\(\Rightarrow\widehat{DAB}+\widehat{HAB}+\widehat{HAC}+\widehat{EAC}=2\widehat{HAB}+2\widehat{HAC}=180^0\)
=> D , A , E thẳng hàng
VÀ AD vuông góc với BD
AE vuông góc với CE
MÀ AD , AE thuộc DE
=> BD // CE
a: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có
góc EHB=góc DHC
=>ΔHEB đồng dạng với ΔHDC
b: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AB*AE; AD/AB=AE/AC
c: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc A chung
=>ΔADE đồng dạng với ΔABC
=>góc AED=góc ACB
a) Xét \(\Delta ABD\)và \(\Delta ACE\)có:
\(\widehat{ADB}=\widehat{AEC}=90^0\)
\(\widehat{BAC}\) chung
suy ra: \(\Delta ABD~\Delta ACE\) (g.g)
\(\Rightarrow\)\(\frac{AB}{AC}=\frac{AD}{AE}\)
\(\Rightarrow\)\(AB.AE=AC.AD\)
b) \(\frac{AB}{AC}=\frac{AD}{AE}\) (câu a)
\(\Rightarrow\)\(\frac{AE}{AC}=\frac{AD}{AB}\)
Xét \(\Delta AED\)và \(\Delta ACB\)có:
\(\frac{AE}{AC}=\frac{AD}{AB}\) (cmt)
\(\widehat{EAD}\) chung
suy ra: \(\Delta AED~\Delta ACB\) (g.g)
c) Kẻ \(HK\perp BC\) \(\left(K\in BC\right)\)
C/m: \(\Delta BKH~\Delta BDC\)(g.g) \(\Rightarrow\) \(\frac{BK}{BD}=\frac{BH}{BC}\)\(\Rightarrow\)\(BH.BD=BK.BC\) (1)
\(\Delta CKH~\Delta CEB\)(g.g) \(\Rightarrow\)\(\frac{CK}{CE}=\frac{CH}{CB}\)\(\Rightarrow\)\(CE.CH=CK.BC\) (2)
Lấy (1) + (2) theo vế ta được: \(BH.BD+CE.CH=BK.BC+CK.BC=BC^2\) (đpcm)
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E co
góc DAB chung
=>ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AB*AE;AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
a, theo định lý pitago tính đc BC
sau đó xét tam giác đồng dạng ABH và CBA là tìm đc AH
hok tốt
a, Xét tam giác ADB và tam giác AEC có
^ADB = ^AEC = 900
^DAB _ chung
Vậy tam giác ADB ~ tam giác AEC (g.g)
b, \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\Rightarrow AD.AC=AB.AE\)
c, \(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{DE}{BC}\right)^2=\dfrac{1}{4}\)
Cám ơn bn <3