Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
a) \(1+3+5+...+\left(2x-1\right)=\frac{\left(2x-1\right)+1}{2}\left(\frac{\left(2x-1\right)-1}{2}+1\right)=x^2\)
\(\Leftrightarrow x^2=225\Rightarrow x=15\)
b) \(2^x+2^{x+1}+...+2^{x+2015}=2^x\left(2^0+2^1+...+2^{2015}\right)\)
Đặt A = 20 + 21 + ... + 22015 . Ta có :
2A = 21 + 22 + ... + 22016
⇒ A = 2A - A = (21 +22 +...+22016 )-(20 + 21 + ... +22015 )
⇒ A = 22016 - 1
⇔ 2x.A = 22019 - 8
⇔ 2x( 22016 - 1 ) = 23 ( 22016 - 1 )
⇔ x = 3
Đề bài c) chưa đủ ý nên o làm đc
Bài 1:
a, 96 \(⋮x=>x\inư\left(96\right)\)
b, \(2^x.15+2^x.17=4^{30}\)
\(2^x\left(15+17\right)=4^{30}\)
\(2^x.32=4^{30}\)
\(2^x.2^5=2^{60}\)
\(2^x=2^{60}:2^5\)
\(2^x=2^{55}\)
=> x = 55
a) x+2x+...+50x =2550
x. [ 1+2+3+....+50]=2550
ta co :
so so hang cua day 1;2;3;4;...;50:
[50-1]:1+1=50
tong cua day tren la :
[50+1].50:2=1275
=> x.1275=2550
x=2550:1275
vay x=2
A) 5.(x-4)=123-38
5.(x-4)=85
x-4=85:5
x-4=17
x=17+4
x=21
câu b tương tự
2)(x:3-4) . 5=15
=> x:3-4=15:5
=> x:3-4=3
=> x:3=3+4
=> x:3=7
=> x=7.3
=> x=21
b3 tự làm
b4a) Vì 70 chia hết x;84 chia hết x => x ∈ ƯC(70,84)
ƯCLN(70,84)=14 ƯC(70,84)=Ư(14)={1,2,7,14}
Vì x>8 =>x=14
b) Vì x chia hết cho12; x chia hết cho 25; x chia hết cho 30=> x ∈ BC(12,25,30)
BCNN(12,25,30)=300 BC(12,25,30)=B(300)={0;300;600;....}
Vì 0 x=300
Bài 1
a) 123-5(x+4)=38 b)(3x-24).73=2.73
5(x+4)=123-38 (3x-16) =2.73:73
5(x-4)=85 (3x-16) =2.1
(x-4)=85:5 3x =2+16
(x-4)=17 3x =18
x =17+4 x =18-3
x =21 x =15
Vậy x=21 Vậy x=15
Bài 2
Theo đề bài ta có
(x:3-4).5=15
x:3-4 =15:5
x:3-4 =3
x:3 =3+4
x:3 =7
x =7.3
x =21
Vậy x=21
Bài 3
a) 62:4.3+2.52 b) 5.42-18:32
=36:4.3+2.25 = 5.16-18:9
=9.3+50 = 90-2
=27+50 = 82
=107
Phân tích ra thừa số nguyên tố
107=1.107( vì 107 là số nguyên tố)
82=2.41
Bài 4
a) \(70⋮x,84⋮x=>x\varepsilonƯC\left(70,84\right)\) (x>8)
Tìm ƯCLN(70, 84)
70=2.5.7
84=22.3.7
=> ƯCLN(70, 84)= 2.7=14
=> x\(\varepsilon\){1,2,7,14}
Vì x>8 nên
x=14
b) \(x⋮12,x⋮25=>x\varepsilon BC\left(12,25\right)\) (0<x<500)
Tìm BCNN(12,25)
12=22.3
25=52
\(=>BCNN\left(12,25\right)=2^2.3.5^2=300\)
=> x\(\varepsilon\){0, 300, 600,.....}
Vì 0<x<500 nên
x=300
Bài này làm lâu lắm nhớ k mik đấy
Đặt \(A=5+5^3+5^5+....+5^{47}+5^{49}\)
\(\Rightarrow5^2A=5^3+5^5+5^7+.....+5^{49}+5^{51}\)
\(\Rightarrow5^2A-A=\left(5^3+5^5+5^7+....+5^{49}+5^{51}\right)-\left(3+3^3+3^5+....+5^{47}+5^{49}\right)\)
\(\Rightarrow24A=5^{51}-5\)
\(\Rightarrow A=\dfrac{5^{51}-5}{24}\)
Vậy ............................................................
1)a) \(\left(3x-7\right)^5=32\Rightarrow\left(3x-7\right)^5=2^5\)
\(\Rightarrow3x-7=2\Rightarrow3x=9\Rightarrow x=3\)
Vậy \(x=3\)
b) \(\left(4x-1\right)^3=-27.125\)
\(\Rightarrow\left(4x-1\right)^3=-3^3.5^3=-15^3\)
\(\Rightarrow4x-1=-15\Rightarrow4x=-14\Rightarrow x=-3,5\)
Vậy \(x=-3,5\)
c) \(3^{4x+4}=81^{x+3}\Rightarrow3^{4x+4}=3^{4x+12}\)
\(\Rightarrow4x+4=4x+12\)
\(\Rightarrow4x=4x+8\)
\(\Rightarrow x\in\varnothing\)
d) \(\left(x-5\right)^7=\left(x-5\right)^9\)
\(\Rightarrow\left(x-5\right)^7-\left(x-5\right)^9=0\)
\(\Rightarrow\left(x-5\right)^7.\left[1-\left(x-5\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-5\right)^7=0\\1-\left(x-5\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x-5=-1\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
Lời giải:
a. $(3x+9)^{40}=49(3x+9)^{38}$
$(3x+9)^{40}-49(3x+9)^{38}$
$(3x+9)^{38}[(3x+9)^2-49]=0$
$\Rightarrow (3x+9)^{38}=0$ hoặc $(3x+9)^2-49=0$
Nếu $(3x+9)^{38}=0$
$\Rightarrow 3x+9=0$
$\Rightarrow x=-3$
Nếu $(3x+9)^2-49=0$
$\Rightarrow (3x+9)^2=49=7^2=(-7)^2$
$\Rightarrow 3x+9=7$ hoặc $3x+9=-7$
$\Rightarrow x=\frac{-2}{3}$ hoặc $x=\frac{-16}{3}$
b/
Xét $A=2^x+2^{x+1}+2^{x+2}+....+2^{x+2015}$
$2A=2^{x+1}+2^{x+2}+2^{x+3}+....+2^{x+2016}$
$\Rightarrow 2A-A=(2^{x+1}+2^{x+2}+2^{x+3}+....+2^{x+2016})-(2^x+2^{x+1}+2^{x+2}+....+2^{x+2015})$
$\Rightarrow A=2^{x+2016}-2^x$
Vậy $2^{x+2016}-2^x=2^{2019}-8$
$\Rightarrow 2^x(2^{2016}-1)=2^3(2^{2016}-1)$
$\Rightarrow 2^x=2^3$
$\Rightarrow x=3$