Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\frac{14}{19}+\frac{13}{17}+\frac{35}{43}+6\)
\(=\frac{71}{19}+\frac{13}{17}+\frac{35}{43}+6\)
\(=\frac{1454}{323}+\frac{35}{43}+6\)
\(=5,...+6\)
\(=11,...\)
\(Bai2a\)\(A=\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\)
\(=\frac{\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{2\left(1+\sqrt{2}\right)}{1+\sqrt{2}}\)
\(=\sqrt{3}-2\)
\(VayA=\sqrt{3}-2\)
Bài 1:
2 . 31 . 12 + 4 . 6 . 42 + 8 . 27 . 3 - 400
= 2 . 12 . 31 + 4 . 6 . 42 + 8 . 3 . 27 - 400
= 24 . 31 + 24 . 42 + 24 . 27 - 400
= 24 . ( 31 + 42 + 27 ) - 400
= 24 . 100 - 400
= 2400 - 400
= 2000
~ Chúc bạn học giỏi ! ~
kết quả la2phan6 số đó bằng nhau không tin bạn thử nhân chéo đi
\(a.\frac{27.45+27.55}{2+4+6+...+14+16+18}=\frac{27.100}{\frac{\left(2+18\right).9}{2}}=30\)
\(b.\frac{26.108-26.12}{32-28+24-20+16-12+8-4}=\frac{26\left(108-12\right)}{\left(32-28\right).4}=\frac{26.96}{4.4}=156\)
\(c.\frac{27.4500+135.550.2}{2+4+6+...+14+16+18}=\frac{270.450+270.550}{\frac{\left(2+8\right).9}{2}}\)
\(d.\frac{48.700-24.45.20}{45-40+35-30+25-20+15-10+5}=\frac{48.700-48.450}{5.5}\)\(=\frac{48\left(700-450\right)}{25}=\frac{48.250}{25}=480\)
#ĐinhBa
1+2+3+4+5+6+7+8+9+10=55
11+12+13+14+15+16+17+18+19+20=155
1+2+3+4+5+6+7+8+9+10+11+12+13+14 +15+16+17+18+19+20+21+22+23+24+25+26+27+28+29+30-50-53=362
\(B=\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(B=\frac{2^{19}.3^9+3.5.2^{18}.3^8}{2^9.3^9.2^{10}+3^{10}.2^{20}}\)
\(B=\frac{2^{19}.3^9+3^9.5.2^{18}}{2^{19}.3^9+3^{10}.2^{20}}\)
\(B=\frac{2^{18}.3^9.\left(2+5\right)}{2^{19}.3^9\left(1+3.2\right)}\)
\(B=\frac{7}{2.7}\)
\(B=\frac{1}{2}\)
\(C=\frac{2^{13}.4^{11}-16^9}{\left(3.2^{17}\right)^2}\)
\(C=\frac{2^{13}.2^{22}-2^{36}}{3^2.2^{34}}\)
\(C=\frac{2^{35}-2^{36}}{3^2.2^{34}}\)
\(C=\frac{2^{35}\left(1-2\right)}{3^2.2^{34}}\)
\(C=\frac{-2}{9}\)
\(D=\frac{4^7.2^8}{3.2^{15}.16^2-5.2^2.\left(2^{10}\right)^2}\)
\(D=\frac{2^{14}.2^8}{3.2^{15}.2^8-5.2^2.2^{20}}\)
\(D=\frac{2^{14}.2^8}{3.2^{23}-5.2^{22}}\)
\(D=\frac{2^{22}}{2^{22}\left(3.2-5\right)}\)
\(D=1\)
Ta có công thức :
\(\frac{a}{b}< 1\) \(\Rightarrow\) \(\frac{a}{b}< \frac{a+c}{b+c}\)
\(\Rightarrow\)\(B=\frac{15^{16}+1}{15^{17}+1}< \frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}=A\)
Vậy \(A>B\)
rõ ràng ta chỉ cần so sánh giữa \(15^{30}+16^{12}+17^{50}-16^8\) và \(17^{30}+16^8+15^{50}-16^{12}\)
Áp dụng tính chất nếu a>b thì a-b>0 ta được:
\(15^{30}+16^{12}+17^{50}-16^8\)- \(\left(17^{30}+16^8+15^{50}-16^{12}\right)\)
= \(\left(17^{50}-17^{30}\right)+\left(16^{12}+16^{12}\right)+\left(15^{30}-15^{50}\right)-\left(16^8+16^8\right)\)
= \(\left(17^{50}-17^{30}\right)+\left(15^{30}-15^{50}\right)+2\left(16^{12}-16^8\right)\)
Vì 17^50 - 17^30 > l 15^30 - 15^50 l
nên \(\left(17^{50}-17^{30}\right)+\left(15^{30}-15^{50}\right)>0\)
=>\(15^{30}+16^{12}+17^{50}-16^8\)> \(17^{30}+16^8+15^{50}-16^{12}\)
=> Phân số thứ nhất > 1 và p/s thứ hai < 1
Lúc này bạn tự so sánh nha