Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a^2}{b^2}=\dfrac{b^2}{c^2}=\dfrac{a^2+b^2}{b^2+c^2}\)
\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{a^2+b^2}{b^2+c^2}\)
\(\Rightarrow\dfrac{a}{b}.\dfrac{b}{c}=\dfrac{a^2+b^2}{b^2+c^2}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{a^2+b^2}{b^2+c^2}\)
Vậy nếu \(\dfrac{a}{b}=\dfrac{b}{c}\) thì \(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\left(đpcm\right)\)
Theo đề bài, ta có:
\(\dfrac{3x}{4}=\dfrac{y}{2}=\dfrac{3z}{5}\) và x - z = 15
\(\Rightarrow\dfrac{3x}{4}=\dfrac{y}{2}\Rightarrow6x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}\) (1)
\(\Rightarrow\dfrac{y}{2}=\dfrac{3z}{5}\Rightarrow5y=6z\Rightarrow\dfrac{y}{6}=\dfrac{z}{5}\) (2)
(1)(2) \(\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{5}=\dfrac{x-z}{4-5}=-\dfrac{15}{1}=-15\)
\(\Rightarrow x=-60;y=-90;z=-75\)
\(\Rightarrow x+y+z=-225\)
Đặt \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=k\)
=> \(\left\{{}\begin{matrix}x-1=2k\\y-2=3k\\z-3=4k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2k+1\\y=3k+2\\z=4k+3\end{matrix}\right.\)
Do: x-2y+3z = 14
<=> 2k+1 - 2(3k+2) + 3(4k+3) = 14
<=> 2k+1 - 6k-4 + 12k+9 = 14
<=> 8k + 6 = 14
<=> 8k = 8
<=> k = 1
<=> \(\left\{{}\begin{matrix}x=3\\y=5\\z=7\end{matrix}\right.\)
\(\sqrt{x^2}.\left|x+2\right|=x\)
\(\Rightarrow x.\left|x+2\right|=x\)
\(\Rightarrow\left|x+2\right|=1\)
\(\Rightarrow\left[\begin{matrix}x+2=1\\x+2=-1\end{matrix}\right.\) \(\Rightarrow\)\(\left[\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
>> Mình không chép lại đề bài nhé ! <<
Cách 1 :
\(A=\left(\dfrac{36-4+3}{6}\right)-\left(\dfrac{30+10-9}{6}\right)-\left(\dfrac{18-14+15}{6}\right)=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}=-\dfrac{15}{6}=-\dfrac{5}{2}\)
Cách 2 :
\(A=6-\dfrac{2}{3}+\dfrac{1}{2}-5+\dfrac{5}{3}-\dfrac{3}{2}-3-\dfrac{7}{3}+\dfrac{5}{2}\)
\(A=\left(6-5-3\right)-\left(\dfrac{2}{3}+\dfrac{5}{3}-\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\right)\)
\(A=-2-0-\dfrac{1}{2}=-\dfrac{5}{2}\)
Cách 1 :
\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)
\(=\left(\dfrac{36}{6}-\dfrac{4}{6}+\dfrac{3}{6}\right)-\left(\dfrac{30}{6}+\dfrac{10}{6}-\dfrac{9}{6}\right)-\left(\dfrac{18}{6}-\dfrac{14}{6}+\dfrac{15}{6}\right)\)
\(=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}\)
\(=-\dfrac{5}{2}\)
Cách 2 :
\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)
\(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)
\(=\left(6-5-3\right)+\left(\dfrac{-2}{3}+\dfrac{-5}{3}+\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{-5}{2}\right)\)
\(=\left(-2\right)+0+\dfrac{-1}{2}\)
\(=\dfrac{-5}{2}\)
a) \(\left(x-3\right)\left(x-2\right)< 0\)
Ta có : \(x-2>x-3\)
\(\Rightarrow\left\{{}\begin{matrix}x-3< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 3\\x>2\end{matrix}\right.\Rightarrow2< x< 3\)
Vậy \(2< x< 3\)
b) \(3x+x^2=0\)
\(x\left(3+x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\3+x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
Vậy \(x\in\left\{-3;0\right\}\)
1)Tìm x:
a)7x=9y và 10x-8y=68
Ta có:7x=9y \(\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\Rightarrow\dfrac{10x-8y}{9.10-7.8}=\dfrac{68}{34}=2\)
\(\Rightarrow\dfrac{x}{9}=2\Rightarrow x=2.9=18\)
\(\dfrac{y}{7}=2\Rightarrow y=2.7=14\)
a/ Ta có :
\(7x=9y\)
\(\Leftrightarrow\dfrac{7x}{63}=\dfrac{9y}{63}\)
\(\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
\(\Leftrightarrow\dfrac{10x}{90}=\dfrac{8y}{56}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{10x}{90}=\dfrac{8y}{56}=\dfrac{10x-8y}{90-56}=\dfrac{68}{34}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{10x}{90}=2\Leftrightarrow x=18\\\dfrac{8y}{56}=2\Leftrightarrow y=14\end{matrix}\right.\)
Vậy ................
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=k\Rightarrow a=2k;b=3k;c=4k\\ \dfrac{2k}{2}=\dfrac{3k}{3}=\dfrac{4k}{4}\\ \Rightarrow\dfrac{\left(2k\right)^2}{2^2}=\dfrac{\left(3k\right)^2}{3^2}=\dfrac{2\left(4k\right)^2}{2\cdot4^2}\\ \Leftrightarrow\dfrac{4k^2}{4}=\dfrac{9k^2}{9}=\dfrac{32k^2}{32}=\dfrac{4k^2-9k^2+32k^2}{4-9+32}=\dfrac{108}{27}=4\\ \dfrac{4k^2-9k^2+32k^2}{4-9+32}=4\\ \Rightarrow\dfrac{\left(4-9+32\right)k^2}{4-9+32}=4\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\\ k=2\Rightarrow\left\{{}\begin{matrix}a=2k=2\cdot2=4\\b=3k=3\cdot2=6\\c=4k=4\cdot2=8\end{matrix}\right.\\ k=-2\Rightarrow\left\{{}\begin{matrix}a=2k=2\cdot\left(-2\right)=-4\\b=3k=3\cdot\left(-2\right)=-6\\c=4k=4\cdot\left(-2\right)=-8\end{matrix}\right.\)
Vậy ...
Ta có : \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)
Áp dụng t/c dãy tỉ số bằng nhau có :
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{a^2-b^2+2c^2}{4-9+32}=\dfrac{108}{27}=4\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{a}{2}=4\\\dfrac{b}{3}=4\\\dfrac{c}{4}=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=8\\b=12\\c=16\end{matrix}\right.\)