Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng tỏ: \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\)
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\)
\(VT=\left(k+1\right)\left[k\left(k+2\right)-k\left(k-1\right)\right]=\left(k+1\right)\left(k^2+2k-k^2+k\right)\)
\(=\left(k+1\right).3k=VP\)
Ta có:
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\\ =k\left(k+1\right)\left[\left(k-2\right)-\left(k-1\right)\right]\\ =k\left(k+1\right)\left[k-2-k+1\right]\\ =k\left(k+1\right)\left\{\left[k+\left(-k\right)\right]+\left(2+1\right)\right\}\\ =k\left(k+1\right).3\\ =3.k\left(k+1\right)\)
Vậy \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\\ =3.k.\left(k+1\right)\)
Ta có:
\(VT=k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\)
\(=k\left(k+1\right)\left[\left(k+2\right)-\left(k-1\right)\right]\)
\(=k\left(k+1\right)\left[k+2-k+1\right]\)
\(=k\left(k+1\right)\left[\left(k-k\right)+\left(2+1\right)\right]\)
\(=k\left(k+1\right).3\)
\(=3k\left(k+1\right)\)
\(\Rightarrow VT=VP\)
Vậy với \(k\in N\)* thì ta luôn có:
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\) (Đpcm)
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=k\left(k+1\right)\left[\left(k+2\right)-\left(k-1\right)\right]=3k\left(k+1\right)\)
Công thức tinh tổng là : \(S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=k\left(k+1\right)\left(k+2-k+1\right)=3k\left(k+1\right)\left(ĐPCM\right)\)
\(S=1.2+2.3+3.4+...+n\left(n+1\right)\)
3\(S=3\left[1.2+2.3+3.4+...+n\left(n+1\right)\right]\)
\(3S=1.2.3-0.1.2+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)
3S=n(n+1)(n+2)
\(S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
a)( -11) .(8.9)= (-11) .8 - (-11) .9= 11
b) (-12).10 - (-9) . 10= [ -12 - (-9) ] . 10 = -30
Điều kiện đúng phải là k là số tự nhiên
a)\(10^k-1⋮19\)
\(\Rightarrow10^k\equiv1\left(mod19\right)\)
\(\Rightarrow10^{2k}\equiv1\left(mod19\right)\)
\(\Rightarrow10^{2k}-1⋮19\)
b) Cách làm tương tự
Sai đề không? Với k = 1 thì 102k - 1 = 100 - 1 = 99 không chia hết cho 19
a)
4 . 25 – 12 . 25 + 170 : 10
= (4 . 25) – (12 . 25) + (170 : 10)
= 100 - 300 + 17
= -183
b)
(7 + 33 + 32) . 4 – 3
= (7 + 27 + 9) .4 – 3
= 43 . 4 – 3
= (43 . 4) – 3
= 45
c)
12 : {400 : [500 – (125 + 25 . 7)}
= 12 : {400 : [500 – (125 + 175)}
= 12 : (400: 200)
= 12 : 2
= 6
d)
168 + {[2.(24 + 32) - 2560] : 72}.
= 168 + [2 . (16 + 9) – 1] : 49
= 168 + 49: 49
= 168 + 1
= 167
a)
4 . 25 – 12 . 25 + 170 : 10
= (4 . 25) – (12 . 25) + (170 : 10)
= 100 - 300 + 17
= -183
b)
(7 + 33 + 32) . 4 – 3
= (7 + 27 + 9) .4 – 3
= 43 . 4 – 3
= (43 . 4) – 3
= 45
c)
12 : {400 : [500 – (125 + 25 . 7)}
= 12 : {400 : [500 – (125 + 175)}
= 12 : (400: 200)
= 12 : 2
= 6
d)
168 + {[2.(24 + 32) - 2560] : 72}.
= 168 + [2 . (16 + 9) – 1] : 49
= 168 + 49: 49
= 168 + 1
= 167
C1: \(1.1.1=1\)
\(\Rightarrow\left(1\right)^3=1\)
\(\Rightarrow\) đề bài sai
có \(\left(1+1\right)^2+3^2=3^2+\left(1+1\right)^2\)
Trừ 2 vế cho 12 ta được : \(\left(1+1\right)^2-12+3^2=3^2-12+\left(1+1\right)^2\)
2x2x3 = 12 \(2^2-2\times2\times3+3^2=3^2-2\times2\times3+2^2\)
Hằng đẳng thức số 2 : \(\left(2-3\right)^2=\left(3-2\right)^2\)
Bình phương bẳng nhau suy ra trong ngoặc = nhau \(\Leftrightarrow2-3=3-2\Leftrightarrow-1=1\)
\(3k\left(3k+3\right)+12=9k^2+9k+12=9k\left(k+1\right)+12\)