K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Độ cao các thửa ruộng so với mực nước biển tạo thành một cấp số cộng với số hạng đầu u1 = 1 250 m và công sai d = 1,2 (m).

Khi đó công thức tổng quát của cấp số cộng là: un = u1 + (n – 1).d = 1 250 + (n – 1).1,2.

Vậy độ cao của thửa ruộng thứ 10 so với mực nước biển là:

u10 = 1 250 + (10 – 1).1,2 = 1 260,8 m.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \(f\left( t \right) = {f_1}\left( t \right) + {f_2}\left( t \right) = 5\sin t + 5\cos t = 5\left( {\sin t + \cos t} \right) = 5\sqrt 2 \sin \left( {t + \frac{\pi }{4}} \right)\)

Suy ra: \(k = 5\sqrt 2 ,\;\varphi  = \frac{\pi }{4}\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

+) Vệ tinh cách mặt đất 1 000 km thì h=1 000

Khi đó

 \(\begin{array}{l}1000 = 550 + 450.\cos \frac{\pi }{{50}}t\\ \Leftrightarrow \cos \frac{\pi }{{50}}t = 1\\ \Leftrightarrow \cos \frac{\pi }{{50}}t = \cos 0\\ \Leftrightarrow \frac{\pi }{{50}}t = 0 + k2\pi \\ \Leftrightarrow t = 100.k\,\,\,\,;k \in N*\end{array}\)

+) Vệ tinh cách mặt đất 250 km thì h=250

Khi đó

 \(\begin{array}{l}250 = 550 + 450.\cos \frac{\pi }{{50}}t\\ \Leftrightarrow \cos \frac{\pi }{{50}}t =  - \frac{2}{3}\\ \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{{50}}t = \arccos \left( { - \frac{2}{3}} \right) + k2\pi \\\frac{\pi }{{50}}t =  - \arccos \left( { - \frac{2}{3}} \right) + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}t = \frac{{50}}{\pi }\left[ {\arccos \left( { - \frac{2}{3}} \right) + k2\pi } \right]\\t = \frac{{50}}{\pi }\left[ { - \arccos \left( { - \frac{2}{3}} \right) + k2\pi } \right]\end{array} \right.;k \in N*\end{array}\)

+) Vệ tinh cách mặt đất 100 km thì h=100

Khi đó

\(\begin{array}{l}100 = 550 + 450.\cos \frac{\pi }{{50}}t\\ \Leftrightarrow \cos \frac{\pi }{{50}}t =  - 1\\ \Leftrightarrow \cos \frac{\pi }{{50}}t = \cos \pi \\ \Leftrightarrow \frac{\pi }{{50}}t = \pi  + k2\pi \\ \Leftrightarrow t = 50 + 100k\,\,\,\,;k \in N*\end{array}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Để ống đựng nước cách mặt nước 2m thì \(h = \left| y \right| = 2\)

Hay \(\left| {2,5.\sin \left( {2\pi x - \frac{\pi }{2}} \right) + 2} \right| = 2\)

Suy ra \(2,5.\sin \left( {2\pi x - \frac{\pi }{2}} \right) + 2 = 2\) hoặc \(2,5.\sin \left( {2\pi x - \frac{\pi }{2}} \right) + 2 =  - 2\)

*) \(2,5.\sin \left( {2\pi x - \frac{\pi }{2}} \right) + 2 = 2\\ \Leftrightarrow \sin \left( {2\pi x - \frac{\pi }{2}} \right) = 0\\ \Leftrightarrow 2\pi x - \frac{\pi }{2} = k\pi ,k \in Z\\ \Leftrightarrow 2x - \frac{1}{2} = k,k \in Z\\ \Leftrightarrow x = \frac{{2k + 1}}{4},k \in Z\\ \Leftrightarrow x \in \left\{ {....; - \frac{1}{4};\frac{1}{4};\frac{3}{4};....} \right\}\)

*)\(2,5.\sin \left( {2\pi x - \frac{\pi }{2}} \right) + 2 =  - 2\\ \Leftrightarrow \sin \left( {2\pi x - \frac{\pi }{2}} \right) =  - 1,6\, <  - 1\)

Vì tập giá trị của hàm số sin là \(\left[ { - 1;1} \right]\) nên trong trường hợp này phương trình vô nghiệm.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Theo đề bài ta có dãy số chỉ độ cao của quả bóng là một cấp số nhân có số hạng đầu \({u_1} = 120\) và công bội \(q = \frac{1}{2}\).

Tổng các độ cao của quả bóng sau 10 lần rơi đầu tiên là:

\({S_{10}} = \frac{{{u_1}\left( {1 - {q^{10}}} \right)}}{{1 - q}} = \frac{{120\left( {1 - {{\left( {\frac{1}{2}} \right)}^{10}}} \right)}}{{1 - \left( {\frac{1}{2}} \right)}} = 239,765625\left( {cm} \right)\).

18 tháng 10 2024

Ở đâu có số 120

Từ 2020 đến 2050 sẽ là 2050-2020=30(năm)

Dân số VN vào năm 2050 sẽ là:

\(97.34\cdot e^{0.91\%\cdot30}\simeq127,90\)(triệu người)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Để đơn giản, ở đây ta chỉ xét một trường hợp cụ thể (trường hợp tổng quát được giải quyết tương tự).

Giả sử tốc độ chạy của A-sin là 100 km/h, còn tốc độ chạy của rùa là 1km/h. Lúc xuất phát, rùa ở điểm A1 cách điểm xuất phát O của A-sin 100km.

Ta tính thời gian A-sin đuổi kịp rùa, bằng cách tính tổng thời gian A-sin chạy hết các quãng đường OA1, A1A2, A2A3,... , An-1An,... Nếu tổng này vô hạn thì A-sin không thể đuổi kịp được rùa, còn nếu nó hữu hạn thì đó chính là thời gian mà A-sin đuổi kịp rùa. 

Để chạy hết quãng đường OA1 =100 (km), A-sin phải mất thời gian t1 =\(\frac{{100}}{{100}}\) =1 (h). 

Với thời gian t1 này, rùa đã chạy được quãng đường A1A=1 (km).

Để chạy hết quãng đường A1A=1 (km), A-sin phải mất thời gian t2 = \(\frac{1}{{100}}\) (h). 

Với thời gian t2 rùa đã chạy thêm được quãng đường A2A= \(\frac{1}{{100}}\) (km).

Tiếp tục như vậy, để chạy hết quãng đường An-1An = \(\frac{1}{{{{100}^{n - 2}}}}\) (km), A-sin phải mất thời gian tn = \(\frac{1}{{{{100}^{n - 1}}}}\) (h). 

Vậy tổng thời gian A-sin chạy hết các quãng đường OA1, A1A2, A2A3,... , An-1An,...  là: 

\(T = 1 + \frac{1}{{100}} + \frac{1}{{{{100}^2}}} + \frac{1}{{{{100}^3}}} + ... + \frac{1}{{{{100}^n}}} + ...\left( h \right)\)

Đó là tổng của một cấp số nhân lùi vô hạn với u1 =1, công bội q = \(\frac{1}{{100}}\), nên ta có:

\(T = \frac{1}{{1 - \frac{1}{{100}}}} = \frac{{100}}{{99}}\left( h \right)\)

Như vậy, A-sin đuổi kịp rùa sau \(\frac{{100}}{{99}}\) giờ. 

Vậy nghịch lí Zénon trong phần mở đầu là không đúng.

22 tháng 9 2023

a) ­­­Phương trình thể hiện dân số sau t năm gấp đôi dân số ban đầu là:

            \(S=2S.e^{1,14.t}\Leftrightarrow2e^{1,14t}=1\Leftrightarrow e^{1,14t}=\dfrac{1}{2}\)

b) Phương trình vừa tìm được có ẩn là t và nằm ở vị trí mũ của lũy thừa

Khi dây nhợ căng ra sẽ tạo thành một đường thẳng. Vì dây không chạm đất nên dây song song với mặt đất.

Tác dụng: Nhờ có dây nhợ được căng ra, bức tường xây được sẽ tạo thành một mặt phẳng vuông góc với mặt đất.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Chu ký hô hấp: \(T = \frac{{2\pi }}{\omega } = \frac{{2\pi }}{{\frac{\pi }{3}}} = 6\left( s \right)\)

Số chu kỳ hô hấp trong 1 phút là \(\frac{60}{6}=10\)(chu kì).

b) Ta có: \(v=0,85\sin \frac{\pi t}{3}\)

+) v > 0 khi \(0,85\sin \frac{\pi t}{3}>0\Leftrightarrow \sin \frac{\pi t}{3}>0\)

Mà – 1 ≤ \(\frac{\pi t}{3}\)≤ 1 với mọi x ∈ ℝ. Do đó, \(0<\sin \frac{\pi t}{3}\le 1\).

+) v < 0 khi \(0,85\sin \frac{\pi t}{3}<0\Leftrightarrow \sin \frac{\pi t}{3}<0\).

Mà – 1 ≤ \(\frac{\pi t}{3}\)≤ 1 với mọi x ∈ ℝ. Do đó, −1 ≤ sin\(\frac{\pi t}{3}\) < 0.

+) Với t ∈ (0; 3) ta có 0 < sin\(\frac{\pi t}{3}\)  ≤ 1.

+) Với t ∈ (3; 5] ta có −1 ≤  sin\(\frac{\pi t}{3}\) < 0.

Vậy trong khoảng thời gian từ 0 đến 5 giây, khoảng thời điểm sau 0 giây đến trước 3 giây thì người đó hít vào và khoảng thời điểm sau 3 giây đến 5 giây thì người đó thở ra.