Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sin60^0=\cos30^0\)
\(\cos73^0=\sin17^0\)
\(\cos84^0=\sin6^0\)
\(\sin55^039^,=\cos34^021^,\)
nếu có sai bn thông cảm nha
a: \(=\left(sin^210^0+sin^280^0\right)+\left(sin^220^0+sin^270^0\right)+sin^245^0\)
\(=1+1+\dfrac{1}{2}=\dfrac{5}{2}\)
b: \(=\left(sin^242^0+sin^248^0\right)+\left(sin^243^0+sin^247^0\right)+...+sin^245^0\)
=1+1+1+1/2
=3,5
c: \(=tan35^0\cdot tan55^0\cdot tan40^0\cdot tan50^0\cdot tan45^0=1\)
d: \(=\left(cos^215^0+cos^275^0\right)-\left(cos^225^0+cos^265^0\right)+\left(cos^235^0+cos^255^0\right)-\dfrac{1}{2}\)
=1-1+1-1/2
=1/2
h a c b m
Gọi AH là đường cao của tam giác ABC (H thuộc BC)
Ta có : cotB=BHAH;cotC=CHAH . Theo giả thiết : cotB=3cotC⇒BH=3CH
Mà BH + CH = BC⇒BC=4CH⇒CH=BC4=2CM4=CM2
Vậy CH=12CM; Ta cũng có : BH=BM+MH=2CH+MH=3CH⇒MH=CH
Do đó AH là đường trung trực của CM => AC = AM (đpcm)
Chú ý 2 điều: \(\cos45^o=\sin45^o=\frac{\sqrt{2}}{2}\) và \(\cos^2a+\sin^2a=1\)
Do đó:
a) \(A=\cos^252^o.\frac{\sqrt{2}}{2}+\sin^252^o.\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}\left(\cos^252^o+\sin^252^o\right)=\frac{\sqrt{2}}{2}.1=\frac{\sqrt{2}}{2}\)
b) \(B=\frac{\sqrt{2}}{2}.\cos^247^o+\frac{\sqrt{2}}{2}.\sin^247^o=\frac{\sqrt{2}}{2}\left(\cos^247^o+\sin^247^o\right)=\frac{\sqrt{2}}{2}.1=\frac{\sqrt{2}}{2}\)
P=sin2200+sin2400+sin2450+sin2500+sin2700
đổi sin2500 thành cos2400,sin2700 thành cos2200 rồi thay vào ta được:
sin2200+cos2200+sin2400+cos2400+\(\left(\dfrac{\sqrt{2}}{2}\right)^2\)
=\(2+\dfrac{1}{2}=\dfrac{5}{2}=2,5\)
để mình làm cho
\(P=\sin^6_a+\cos^6_a+3\sin_a^2+\cos^2_a=\left(\sin^2_a+\cos^2_a\right)\left(\sin^4_a-\sin^2_a\cos^2_a+\cos^4_a\right)\) \(+3.\sin^2_a.\cos^2_a\)
\(=\sin^4_a+2\sin^2_a.\cos^2_a+\cos^4_a=\left(\sin^2_a+\cos^2_a\right)^2=1\)
đề đoạn cuối phải là nhân chứ không phải +
Chú ý định lí về tỉ số lượng giác của hai góc nhọn phụ nhau
Example: \(\sin57^o=\cos33^o\)