K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2018

Quy tắc tính logarit

29 tháng 5 2017

1. Tính chất của hàm số mũ y= ax ( a > 0, a# 1).

- Tập xác định: .

- Đạo hàm: ∀x ∈ ,y= axlna.

- Chiều biến thiên Nếu a> 1 thì hàm số luôn đồng biến

Nếu 0< a < 1 thì hàm số luôn nghịch biến

- Tiệm cận: trục Ox là tiệm cận ngang.

- Đồ thị nằm hoàn toàn về phía trên trục hoành ( y= ax > 0, ∀x), và luôn cắt trục tung taih điểm ( 0;1) và đi qua điểm (1;a).

2. Tính chất của hàm số lôgarit y = logax (a> 0, a# 1).

- Tập xác định: (0; +∞).

- Đạo hàm ∀x ∈ (0; +∞),y = .

- Chiều biến thiên: Nếu a> 1 thì hàm số luôn đồng biến

Nếu 0< a < 1 thì hàm số luôn nghịch biến

- Tiệm cận: Trục Oy là tiệm cận đứng.

- Đồ thị nằm hoàn toàn phía bên phải trục tung, luôn cắt trục hoành tại điểm (1;0) và đi qua điểm (a;1).

3. Chú ý

- Vì e > 1 nên nếu a > 1 thì lna > 0, suy ra (ax) > 0,∀x và (logax) > 0, ∀x > 0;

do đó hàm số mũ và hàm số lôgarit với cơ số lớn hơn 1 đều là những hàm số luôn luôn đồng biến.

Tương tự, nếu 0 < a< 1thì lna < 0, (ax) < 0 và (logax) < 0, ∀x > 0; hàm số mũ và hàm số lôgarit với cơ số nhỏ hơn 1 đều là những hàm số luôn luôn nghịch biến.

- Công thức đạo hàm của hàm số lôgarit có thể mở rộng thành

(ln|x|) = , ∀x # 0 và (loga|x|) = , ∀x # 0.

6 tháng 8 2019

Chọn D

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

12 tháng 11 2019

Chọn D

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 

9 tháng 4 2017

- Tính chất của hàm số mũ y= ax ( a > 0, a# 1).

- Tập xác định: .

- Đạo hàm: ∀x ∈ ,y= axlna.

- Chiều biến thiên Nếu a> 1 thì hàm số luôn đồng biến

Nếu 0< a < 1 thì hàm số luôn nghịch biến

- Tiệm cận: trục Ox là tiệm cận ngang.

- Đồ thị nằm hoàn toàn về phía trên trục hoành ( y= ax > 0, ∀x), và luôn cắt trục tung taih điểm ( 0;1) và đi qua điểm (1;a).

- Tính chất của hàm số lôgarit y = logax (a> 0, a# 1).

- Tập xác định: (0; +∞).

- Đạo hàm ∀x ∈ (0; +∞),y = .

- Chiều biến thiên: Nếu a> 1 thì hàm số luôn đồng biến

Nếu 0< a < 1 thì hàm số luôn nghịch biến

- Tiệm cận: Trục Oy là tiệm cận đứng.

- Đồ thị nằm hoàn toàn phía bên phải trục tung, luôn cắt trục hoành tại điểm (1;0) và đi qua điểm (a;1).



8 tháng 4 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

c) Bất phương trình đã cho tương đương với hệ:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy tập nghiệm là (− ∞ ; −1) ∪ (2; 11/5)

d) ln|(x − 2)(x + 4)| ≤ ln8

⇔| x 2  + 2x − 8| ≤ 8

⇔ −8 ≤  x 2  + 2x – 8 ≤ 8

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy tập nghiệm là

Giải sách bài tập Toán 12 | Giải sbt Toán 12

7 tháng 6 2017

Điều kiện:

9 tháng 11 2019

Điều kiện