K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2019

c) (d) cắt (d') tại 1 điểm nằm trên trục tung khi

27 tháng 2 2019

b) (d) đi qua điểm A (2; 5) và B ( -2; 3) khi:

21 tháng 12 2021

 -4m+n=-2

sao thành 2n=10

Cho \(\left(d\right):y=ax+b\left(a\ne0\right)\) Xác định hệ số a,b trong mỗi trường hợp sau: a.(d) đi qua A(-1;4);B(2;-3) b.(d) đi qua C(-5;3) và song song với đường thẳng y=2x+3 c.(d) đi qua D(4;-1) và vuông góc với đường thẳng \(y=-\frac{2}{3}x-5\) d.(d) có tung độ gốc bằng 2 và cắt đường thẳng y=x-1 tại điểm có hoành độ bằng -1 e.(d) cắt (P) \(y=-x^2\) tại hai điểm có hoành độ lần lượt bằng 2;1 f.(d) có hệ số...
Đọc tiếp

Cho \(\left(d\right):y=ax+b\left(a\ne0\right)\)

Xác định hệ số a,b trong mỗi trường hợp sau:

a.(d) đi qua A(-1;4);B(2;-3)

b.(d) đi qua C(-5;3) và song song với đường thẳng y=2x+3

c.(d) đi qua D(4;-1) và vuông góc với đường thẳng \(y=-\frac{2}{3}x-5\)

d.(d) có tung độ gốc bằng 2 và cắt đường thẳng y=x-1 tại điểm có hoành độ bằng -1

e.(d) cắt (P) \(y=-x^2\) tại hai điểm có hoành độ lần lượt bằng 2;1

f.(d) có hệ số góc bằng 2 và đi qua điểm nằm trên đường thẳng y=2x-3 có tung độ bằng 1

Bài 2:

a)Tìm điểm cố định của các đường thẳng sau:

\(y=mx-2m-1\)

\(y=mx+m-1\)

y=(m+1)x+2m-3

b) Chứng minh đường thẳng \(y=\left(m-1\right)x-2m+3\) luôn đi qua 1 điểm cố định thuộc (P):y=\(\frac{1}{4}x^2\)

c)Chứng minh đường thẳng y=2mx+1-m luôn đi qua 1 điểm cố định thuộc (P) y=\(4x^2\)

3
NV
4 tháng 5 2019

Bài 1:

a/ \(\left\{{}\begin{matrix}4=-a+b\\-3=2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{7}{3}\\b=\frac{5}{3}\end{matrix}\right.\)

b/ Do d song song với \(y=2x+3\Rightarrow\left\{{}\begin{matrix}a=2\\b\ne3\end{matrix}\right.\)

\(3=-5.2+b\Rightarrow b=13\)

c/ Do d vuông góc \(y=-\frac{2}{3}x-5\Rightarrow-\frac{2}{3}.a=-1\Rightarrow a=\frac{3}{2}\)

\(-1=\frac{3}{2}.4+b\Rightarrow b=-7\)

d/ \(b=2\Rightarrow y=ax+2\)

d cắt \(y=x-1\) tại điểm có hoành độ 1 \(\Rightarrow d\) đi qua điểm A(1;0)

\(\Rightarrow0=a+2\Rightarrow a=-2\)

e/ Thay 2 hoành độ vào pt (P) ta được \(\left\{{}\begin{matrix}A\left(2;-4\right)\\B\left(1;-1\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-4=2a+b\\-1=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-3\\b=2\end{matrix}\right.\)

f/ \(a=2\)

Thay tung độ y=1 vào pt đường thẳng được \(A\left(2;1\right)\)

\(\Rightarrow1=2.2+b\Rightarrow b=-3\)

NV
4 tháng 5 2019

Bài 2:

\(y=mx-2m-1\Rightarrow\left(x-2\right).m-\left(y+1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\) \(\Rightarrow A\left(2;-1\right)\)

\(y=mx+m-1\Rightarrow\left(x+1\right).m-\left(y+1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow B\left(-1;-1\right)\)

\(y=\left(m+1\right)x+2m-3\Rightarrow y=\left(m+1\right)x+2\left(m+1\right)-5\)

\(\Rightarrow\left(m+1\right)\left(x+2\right)-\left(y+5\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+2=0\\y+5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)

28 tháng 10 2018

Gọi A là giao của (d1) và (d2)

⇒ x + 3 = 3x - 1 ⇔ 2x = 4 ⇔ x = 2 ⇒ y = 5

Nên A (2; 5)

Để 3 đường thẳng đồng quy thì (d3) đi qua A.

⇔ 2m + 2m - 1 = 5

\(m=\dfrac{3}{2}\)

Vậy với m = 3/2 thì 3 đường thẳng đã cho đồng quy

11 tháng 7 2018

Tọa độ giao điểm của (d) và (d') là nghiệm của hệ phương trình:

Cho hàm sốĐề kiểm tra Toán 9 | Đề thi Toán 9

Vậy tọa độ giao điểm của (d) và (d') là (3/2; 3/2)

24 tháng 11 2023

Thay x=2 và y=3 vào (d), ta được:

\(2\left(2m-n\right)+m+n-3=3\)

=>4m-2n+m+n=6

=>5m-n=6(1)

Thay x=-1 và y=4 vào (d), ta được:

\(\left(-1\right)\cdot\left(2m-n\right)+m+n-3=4\)

=>-2m+n+m+n=7

=>-m+2n=7(2)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}5m-n=6\\-m+2n=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5m-n=6\\-5m+10n=35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9n=41\\5m-n=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}n=\dfrac{41}{9}\\5m=n+6=\dfrac{41}{9}+6=\dfrac{41}{9}+\dfrac{54}{9}=\dfrac{95}{9}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=\dfrac{19}{9}\\n=\dfrac{41}{9}\end{matrix}\right.\)