Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x^4+2017x^2+2016x+2017
=x^4+x^3-x^3+x^2-x^2+2017x^2+2017x-x+2017
=x^4+x^3+x^2-x^3-x^2-x+2017x^2+2017x+2017
=x^2(x^2+x+1)-x(x^2+x+1)+2017(x^2+x+1)
=(x^2+x+1)(x^2-x+2017)
Nhớ k mk nha
Ta có : x^4+2017x^2+2016x+2017
=x^4+x^3-x^3+x^2-x^2+2017x^2+2017x-x+2017
=x^4+x^3+x^2-x^3-x^2-x+2017x^2+2017x+2017
=x^2(x^2+x+1)-x(x^2+x+1)+2017(x^2+x+1)
=(x^2+x+1)(x^2-x+2017)
chúc cậu hok tốt _@
\(x^4+2017x^2+2016x+2017\)
\(=\left(x^4+x^2+1\right)+2016\left(x^2+x+1\right)\)
\(=\left(x^4+2x^2+1-x^2\right)+2016\left(x^2+x+1\right)\)
\(=\left[\left(x^2+1\right)-x^2\right]+2016\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+2016\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2017\right)\)
\(x^4+2017x^2+2016x+2017\)
\(=\left(x^4-x\right)+\left(2007x^2+2007x+2007\right)\)
\(=x.\left(x^3-1\right)+2007.\left(x^2+x+1\right)\)
\(=x.\left(x-1\right)\left(x^2+x+1\right)+2007.\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2007\right)\)
a,\(x^5-x^4-x^4+x^3+2x^3-2x^2-2x^2+2\)2x-2x+2\(x^4\left(x-1\right)-x^3\left(x-1\right)+2x^2\left(x-1\right)-2x\left(x-1\right)+2\left(x-1\right)\)
=\(\left(x^4-x^3+2x^2-2x+2\right)\left(x-1\right)\)
b,
\(x^4+2016x^2+2017x+2016\)
\(=x^4+2016x^2+2016x+x+2016\)
\(=\left(x^4+x\right)+\left(2016x^2+2016x+2016\right)\)
\(=x\left(x^3+1\right)+2016\left(x^2+x+1\right)\)
\(=x\left(x+1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2+x+2016\right)\)
\(a,x^4-4x^3+x^2-4x=0\)
\(\Rightarrow\left(x^4-4x^3\right)+\left(x^2-4x\right)=0\)
\(\Rightarrow x^3\left(x-4\right)+x\left(x-4\right)=0\)
\(\Rightarrow\left(x-4\right)\left(x^2+x\right)=0\)
\(\Rightarrow x\left(x-4\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-1\end{matrix}\right.\)
\(b,x^3-5x^2+4x-20=0\)
\(\Rightarrow\left(x^3-5x^2\right)+\left(4x-20\right)=0\)
\(\Rightarrow x^2\left(x-5\right)+4\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x^2+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\\x^2+4=0\end{matrix}\right.\)
\(\Rightarrow x=5\)
a) \(x^4-4x^3+x^2-4x=0\)
\(\Leftrightarrow\left(x^4-4x^3\right)+\left(x^2-4x\right)=0\)
\(\Leftrightarrow x^3\left(x-4\right)+x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^3+x\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x^2+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x^2=-1\left(loai\right)\end{matrix}\right.\)
Vậy x=0; x=4
b) \(x^3-5x^2+4x-20=0\)
\(\Leftrightarrow\left(x^3-5x^2\right)+\left(4x-20\right)=0\)
\(\Leftrightarrow x^2\left(x-5\right)+4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x^2+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x^2=-4\left(loai\right)\end{matrix}\right.\)
Vậy x=5
x=2016 =>x+1=2017
Thay 2007=x+1 vào A ................................................. tự típ
\(x^4+2017x^2+2016x+2017\)
\(=x^4+2017x^2-x+2017x+2017\)
\(=\left(x^4-x\right)+\left(2017x^2+2017x+2017\right)\)
\(=x.\left(x^3-1\right)+2017.\left(x^2+x+1\right)\)
\(=x.\left(x^3-x^2+x^2-x+x-1\right)+2017.\left(x^2+x+1\right)\)
\(=x.\left[x^2.\left(x-1\right)+x.\left(x-1\right)+\left(x-1\right)\right]+2017.\left(x^2+x+1\right)\)
\(=x.\left(x-1\right)+\left(x^2+x+1\right)+2017.\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right).\left[x\left(x-1\right)+2017\right]\)
\(=\left(x^2+x+1\right).\left(x^2-x+2017\right)\)
Chúc bạn học tốt!!!