Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(x+1+5\right)\left(x+1-5\right)=\left(x+6\right)\left(x-4\right)\)
b: =(1-2x)(1+2x)
c: \(=\left(2-3x\right)\left(4+6x+9x^2\right)\)
d: =(x+3)^3
e: \(=\left(2x-y\right)^3\)
f: =(x+2y)(x^2-2xy+4y^2)
a: \(=a\left(y^2-2yz+z^2\right)\)
\(=a\left(y-z\right)^2\)
b: \(=\left(x^2+6xy+9y^2\right)-16\)
=(x+3y)^2-16
=(x+3y+4)(x+3y-4)
c: \(=7\left(a-b\right)+\left(a-b\right)\left(a+b\right)\)
=(a-b)(7+a+b)
d: \(36x^4-13x^2\)
=x^2*36x^2-x^2*13
=x^2(36x^2-13)
f: x^2-2xy+y^2-49
=(x-y)^2-49
=(x-y-7)(x-y+7)
e: 2x^3-18x
=2x(x^2-9)
=2x(x-3)(x+3)
g: 2x+2y-x^2-xy
=2(x+y)-x(x+y)
=(x+y)(2-x)
h: (x^2+3)^2+16
=x^4+6x^2+25
=x^4+10x^2+25-4x^2
=(x^2+5)^2-4x^2
=(x^2-2x+5)(x^2+2x+5)
Bài làm:
a, 1-4x2
=1-(2x)2
=(1-2x).(1+2x)
b, 8-27x3
=23-(3x)3
=(2-3x).(4+6x+9x2)
Các câu còn lại bạn dùng hằng đẳng thức là phân tích được ra thôi
1 - 4x^2
= 1^2 - ( 2x )^2
= ( 1 - 2x ) ( 1 + 2x )
8 - 27x^ 3
= 2^3 - ( 3x )^3
= ( 2 - 3x ) [ 2^2 + 2 * 3x + ( 3x )^2 ]
= ( 2 - 3x ) ( 4 + 6x + 9x^2 )
= ( 2 - 3x ) ( 9x^2 + 6x + 4 )
27 + 27x + 9x^2 + x^3
= x^3 + 9x^2 + 27x + 27
= x^3 + 3x^2 + 6x^2 + 18x + 9x + 27
= x^2 ( x + 3 ) + 6x ( x + 3 ) + 9 ( x + 3 )
= ( x + 3 ) ( x^2 + 6x + 9 )
= ( x + 3 ) ( x + 3 )^2
= ( x + 3 )^3
x^2 + 4x - 5
= x^2 - x + 5x - 5
= x ( x - 1 ) + 5 ( x - 1 )
= ( x + 1 ) ( x - 5 )
mk ghi đáp án, ko phân tích đc thì IB mk
a) \(x^2+6xy+9y^2=\left(x+3y\right)^2\)
b) \(4a^4-4a^2b^2+b^4=\left(2a^2-b^2\right)^2\)
c) \(x^6+y^2-2x^3y=\left(x^3-y\right)^2\)
d) \(\left(x+y\right)^3-\left(x-y\right)^3=2y\left(3x^2+y^2\right)\)
e) \(25x^4-10x^2y^2+y^4=\left(5x^2-y^2\right)^2\)
f) \(-a^2-2a-1=-\left(a+1\right)^2\)
g) \(27b^3-8a^3=\left(3b-2a\right)\left(9b^2+6ab+4a^2\right)\)
h) \(x^3+9x^2y+27xy^2+27y^3=\left(x+3y\right)^3\)
i) \(16x^2-9\left(x+y\right)^2=\left(x-3y\right)\left(7x+3y\right)\)
a) \(x^4-y^4\)
\(=\left(x^2\right)^2-\left(y^2\right)^2\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)
b) \(x^2-3y^2\)
\(=x^2-\left(y\sqrt{3}\right)^2\)
\(=\left(x-y\sqrt{3}\right)\left(x+y\sqrt{3}\right)\)
c) \(\left(3x-2y\right)^2-\left(2x-3y\right)^2\)
\(=\left(3x-2y+2x-3y\right)\left(3x-2y-2x+3y\right)\)
\(=\left(5x-5y\right)\left(x+y\right)\)
\(=5\left(x-y\right)\left(x+y\right)\)
d) \(9\left(x-y\right)^2-4\left(x+y\right)^2\)
\(=\left[3\left(x-y\right)+2\left(x+y\right)\right]\left[3\left(x-y\right)-2\left(x+y\right)\right]\)
\(=\left(3x-3y+2x+2y\right)\left(3x-3y-2x-2y\right)\)
\(=\left(5x-y\right)\left(x-5y\right)\)
e) \(\left(4x^2-4x+1\right)-\left(x+1\right)^2\)
\(=\left(2x-1\right)^2-\left(x+1\right)\)
\(=\left(2x-1+x+1\right)\left(2x-1-x-1\right)\)
\(=3x\left(x-2\right)\)
f) \(x^3+27\)
\(=x^3+3^3\)
\(=\left(x+3\right)\left(x^2-3x+9\right)\)
g) \(27x^3-0,001\)
\(=\left(3x\right)^3-\left(0,1\right)^3\)
\(=\left(3x-0,1\right)\left(9x^2+0,3x+0,01\right)\)
h) \(125x^3-1\)
\(=\left(5x\right)^3-1^3\)
\(=\left(5x-1\right)\left(25x^2+5x+1\right)\)
1) \(x^2-16=\left(x-4\right)\left(x+4\right)\)
2)\(4a^{201}\)
3)\(x^2-3=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)
4)\(25-9y^2=\left(5-3y\right)\left(5+3y\right)\)
5)\(\left(a+1\right)^2-16=\left(a+1-16\right)\left(a+1+16\right)=\left(a-15\right)\left(a+17\right)\)
6)\(x^2-\left(2+y\right)^2=\left(x-2-y\right)\left(x+2+y\right)\)
7) (a+b)2-(a-b)2
= \(\left(a^2+2ab+b^2\right)-\left(a^2-2ab+b^2\right)=4ab\)
8 ) a^2 + 2ax + x^2
= ( a + x )2
9) x^2 - 4x + 4
= ( x-2)2
10) x^2-6xy+9y^2
= (x - 3y )2
11) x^3+8
= (x+2)( x2 - 2x + 4 )
12) a^3 + 27b^3
= (a + 3b ) ( a2 - 3ab + 9b2 )
13) 27x^3 - 1
= ( 3x -1 ) ( 9x2 + 3x +1)
14) 1/8 - b^3
= ( 1/2 - b ) ( 1/4 + 1/2b + b2)
15) a^3 - (a+b)3
= a3 - ( a3 + 3a2b + 3ab2 + b3)
= - 3a2b - 3ab2- b3= -b (3a2 + 3ab +b2)
16) 4x^2 + 4x + 1
= (2x +1 )2
\(\left(x-1\right)^2-25\)
\(=x^2-2x+1-25\)
\(=x^2-2x-24\)
\(=x^2-6x+4x-24\)
\(=x.\left(x-6\right)+4.\left(x-6\right)\)
\(=\left(x+4\right).\left(x-6\right)\)
a, \(1-2y+y^2=\left(y+1\right)^2=\left(y+1\right)\left(y+1\right)\)
b, \(\left(x+1\right)^2-25=\left(x+1\right)^2-5^2=\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)
c, \(1-4x^2=1^2-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)
d, \(8-27x^3=2^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
bài 1: a) \(x^2-3=x^2-\left(\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)\)
b) \(\left(a+b\right)^2-\left(a+b\right)^2=\left(a+b+a+b\right)\left(a+b-a-b\right)=2a+2b=2\left(a+b\right)\)
c) \(x^3-27b^3=\left(x-3b\right)\left(x^2+3xb+b^2\right)\)
a. (a2 - b2)2 - (a2 + b2)2
= (a2 - b2 - a2 - b2)(a2 - b2 + a2 + b2)
= -2b2 . 2a2
b. a6 - b6
<=> (a3)2 - (b3)2
<=> (a3 - b3)(a3 + b3)
\(a,\left(a^2-b^2\right)^2-\left(a^2+b^2\right)^2\\ =a^4-2a^2b^2+b^4-a^4-2a^2b^2-b^4\\ =-4a^2b^2\)
\(b,a^6-b^6=a^2\left(a^3-b^3\right)=a^2\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(c,-4x^2+9y^2=\left(3y-2x\right)\left(3y+2x\right)\\ d,\left(x+1\right)^3-\left(2-x\right)^3\\ =\left(x+1-2+x\right)\left[\left(x+1\right)^2+\left(x+1\right)\left(2-x\right)+\left(2-x\right)^2\right]\\ =\left(2x-1\right)\left(x^2+2x+1-x^2+x+2+x^2-4x+4\right)\\ =\left(2x-1\right)\left(x^2-x+7\right)\)
\(e,8+\left(4x-3\right)^3\\ =\left(8+4x-3\right)\left[64-8\left(4x-3\right)+\left(4x-3\right)^2\right]\\ =\left(4x+5\right)\left(64-32x+24+16x^2-24x+9\right)\\ =\left(4x+5\right)\left(16x^2-56x+97\right)\)
\(g,81-\left(9-x^2\right)^2\\ =\left(9-9+x^2\right)\left(9+9-x^2\right)\\ =x^2\left(18-x^2\right)\left[=x^2\left(\sqrt{18}-x\right)\left(\sqrt{18}+x\right)\right]\)
Chỗ trong ngoặc nếu bạn chưa học căn thì ko cần ghi nha